Challenges in data-driven geospatial modeling for environmental research and practice

被引:2
|
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Data-driven modeling and control of droughts
    Zaniolo, Marta
    Giuliani, Matteo
    Castelletti, Andrea
    IFAC PAPERSONLINE, 2019, 52 (23): : 54 - 60
  • [42] Data-driven Modeling of Airlines Pricing
    Lantseva, Anastasia
    Mukhina, Ksenia
    Nikishova, Anna
    Ivanov, Sergey
    Knyazkov, Konstantin
    4TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, 2015, 66 : 267 - 276
  • [43] Data-driven modeling of power networks
    Safaee, Bita
    Gugercin, Serkan
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4236 - 4241
  • [44] Emerging as Leaders in Autism Research and Practice: Using the Data-Driven Intervention Process
    Schaaf, Roseann C.
    Blanche, Erna Imperatore
    AMERICAN JOURNAL OF OCCUPATIONAL THERAPY, 2012, 66 (05): : 503 - 505
  • [45] Research on data-driven coal mine environmental safety risk assessment system
    Lu, Cheng
    Li, Shuang
    Xu, Kun
    Zhang, Yi
    SAFETY SCIENCE, 2025, 183
  • [46] Ethical Challenges in Data-Driven Dialogue Systems
    Henderson, Peter
    Sinha, Koustuv
    Angelard-Gontier, Nicolas
    Ke, Nan Rosemary
    Fried, Genevieve
    Lowe, Ryan
    Pineau, Joelle
    PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), 2018, : 123 - 129
  • [47] CODATA and global challenges in data-driven science
    Rybkina, A.
    Hodson, S.
    Gvishiani, A.
    Kabat, P.
    Krasnoperov, R.
    Samokhina, O.
    Firsova, E.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2018, 18 (04):
  • [48] Data-driven Roadmapping Turning Challenges into Opportunities
    Pora, Ummaraporn
    Thawesaengskulthai, Natcha
    Gerdsri, Nathasit
    Triukose, Sipat
    2018 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET '18): MANAGING TECHNOLOGICAL ENTREPRENEURSHIP: THE ENGINE FOR ECONOMIC GROWTH, 2018,
  • [49] Data-Driven Usability Refactoring: Tools and Challenges
    Garrido, Alejandra
    Firmenich, Sergio
    Grigera, Julian
    Rossi, Gustavo
    6TH INTERNATIONAL WORKSHOP ON SOFTWARE MINING (SOFTWAREMINING), 2017, : 52 - 55
  • [50] Opportunities and Challenges of Data-Driven Virus Discovery
    Lauber, Chris
    Seitz, Stefan
    BIOMOLECULES, 2022, 12 (08)