Challenges in data-driven geospatial modeling for environmental research and practice

被引:2
|
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing
    Gao, Jing
    Burt, James E.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 134 : 110 - 121
  • [32] Ethiopia's Water Resources: An Assessment Based on Geospatial Data-Driven Distributed Hydrological Modeling Approach
    Woldegebriel, Tamrat
    Garg, Vaibhav
    Gupta, Prasun Kumar
    Srivastav, S. K.
    Ranjan, Rajeev
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (06) : 1031 - 1049
  • [33] Ethiopia’s Water Resources: An Assessment Based on Geospatial Data-Driven Distributed Hydrological Modeling Approach
    Tamrat Woldegebriel
    Vaibhav Garg
    Prasun Kumar Gupta
    S. K. Srivastav
    Rajeev Ranjan
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 1031 - 1049
  • [34] A PHYSICS-BASED DATA-DRIVEN APPROACH FOR MODELING OF ENVIRONMENTAL DEGRADATION IN ELASTOMERS
    Ghaderi, Aref
    Chen, Yang
    Dargazany, Roozbeh
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 9, 2022,
  • [35] Data-driven modeling of acoustical instruments
    Schoner, B
    Cooper, C
    Douglas, C
    Gershenfed, N
    JOURNAL OF NEW MUSIC RESEARCH, 1999, 28 (02) : 81 - 89
  • [36] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226
  • [37] Data-Driven multiscale modeling in mechanics
    Karapiperis, K.
    Stainier, L.
    Ortiz, M.
    Andrade, J. E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [38] Data-Driven Modeling of Chromatographic Processes
    不详
    CHEMICAL ENGINEERING PROGRESS, 2024, 120 (12) : 10 - 10
  • [39] On the Data-Driven Modeling of Reactive Extrusion
    Ibanez, Ruben
    Casteran, Fanny
    Argerich, Clara
    Ghnatios, Chady
    Hascoet, Nicolas
    Ammar, Amine
    Cassagnau, Philippe
    Chinesta, Francisco
    FLUIDS, 2020, 5 (02)
  • [40] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,