Challenges in data-driven geospatial modeling for environmental research and practice

被引:2
|
作者
Koldasbayeva, Diana [1 ]
Tregubova, Polina [1 ]
Gasanov, Mikhail [1 ]
Zaytsev, Alexey [1 ,2 ]
Petrovskaia, Anna [1 ]
Burnaev, Evgeny [1 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Yanqi Lake Beijing Inst Math Sci & Applicat BIMSA, Beijing, Peoples R China
[3] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow, Russia
关键词
SPATIAL AUTOCORRELATION; IMBALANCED DATA; DATA AUGMENTATION; UNCERTAINTY; CLASSIFICATION; SYSTEM; SMOTE; PERFORMANCE; DESIGN;
D O I
10.1038/s41467-024-55240-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning-based geospatial applications offer unique opportunities for environmental monitoring due to domains and scales adaptability and computational efficiency. However, the specificity of environmental data introduces biases in straightforward implementations. We identify a streamlined pipeline to enhance model accuracy, addressing issues like imbalanced data, spatial autocorrelation, prediction errors, and the nuances of model generalization and uncertainty estimation. We examine tools and techniques for overcoming these obstacles and provide insights into future geospatial AI developments. A big picture of the field is completed from advances in data processing in general, including the demands of industry-related solutions relevant to outcomes of applied sciences.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
    Livia Abdalla
    Douglas A. Augusto
    Marcia Chame
    Amanda S. Dufek
    Leonardo Oliveira
    Eduardo Krempser
    Scientific Data, 9
  • [2] Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
    Abdalla, Livia
    Augusto, Douglas A.
    Chame, Marcia
    Dufek, Amanda S.
    Oliveira, Leonardo
    Krempser, Eduardo
    SCIENTIFIC DATA, 2022, 9 (01)
  • [3] Data-driven matching of geospatial schemas
    Volz, S
    SPATIAL INFORMATION THEORY, PROCEEDINGS, 2005, 3693 : 115 - 132
  • [4] Data-driven thermoelectric modeling: Current challenges and prospects
    Mbaye, Mamadou T.
    Pradhan, Sangram K.
    Bahoura, Messaoud
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (19)
  • [5] Data-Driven Modeling: Concept, Techniques, Challenges and a Case Study
    Habib, Maki K.
    Ayankoso, Samuel A.
    Nagata, Fusaomi
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 1000 - 1007
  • [6] Research progress and challenges of data-driven quantitative remote sensing
    Yang, Qianqian
    Jin, Caiyi
    Li, Tongwen
    Yuan, Qiangqiang
    Shen, Huanfeng
    Zhang, Liangpei
    National Remote Sensing Bulletin, 2022, 26 (02) : 268 - 285
  • [7] Challenges and Research Directions in Big Data-driven Cloud Adaptivity
    Tsagkaropoulos, Andreas
    Papageorgiou, Nikos
    Apostolou, Dimitris
    Verginadis, Yiannis
    Mentzas, Gregoris
    CLOSER: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2018, : 190 - 200
  • [8] Strategies and Challenges of Data-driven Research and Discovery in Luminescent Materials
    Huang, Lin
    Xie, Rongjun
    Faguang Xuebao/Chinese Journal of Luminescence, 2024, 45 (08): : 1219 - 1231
  • [9] Geo-text data and data-driven geospatial semantics
    Hu, Yingjie
    GEOGRAPHY COMPASS, 2018, 12 (11):
  • [10] The environmental sustainability of data-driven health research: A scoping review
    Samuel, Gabrielle
    Lucassen, A. M.
    DIGITAL HEALTH, 2022, 8