Biocompatible all carbon hollow microneedles for effective transdermal delivery

被引:0
|
作者
Roy, Magnolia [1 ]
Mondal, Monojit [1 ]
Ghosh, Sudipta [2 ]
Lahiri, Pooja [3 ]
Bhattacharyya, Tarun Kanti [1 ]
机构
[1] Indian Inst Technol, Dept Elect & Elect Commun Engn, Kharagpur, India
[2] Inst Engn & Management, Dept Elect & Commun Engn, Kolkata, India
[3] Indian Inst Technol, Dept Adv Technol & Dev Ctr, Kharagpur, India
关键词
all-carbon microneedles; photolithography; carbon MEMS; preclinical studies; transdermal delivery; DRUG-DELIVERY; FABRICATION; ARRAYS; DESIGN; MICRO;
D O I
10.1088/1361-6439/ada61f
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although transdermal drug delivery has significantly progressed, it is still challenging to identify a biocompatible, mechanically consistent, scalable method. This work offers a novel approach for producing all-carbon hollow microneedles (MNs) using UV photolithography following high-temperature pyrolysis. These MNs, with dimensions of 450 mu m height, 100 mu m external diameter, and 80 mu m internal diameter, had hitherto unheard-of mechanical and functional properties, including a hardness of 5.55 GPa and the capacity to withstand skin resistive pressures of 3.18 MPa without compromising their structural integrity. Compared to previous designs, this new method ensures accurate and consistent hollow conduits, as shown by SEM imaging, and leads to better flow rates of 111.66 mu l min(-1) for deionized water and 134.28 mu l min(-1) for ethanol. Preclinical testing further highlights their outstanding biocompatibility, low tissue inflammation, and high insertion success rates (>90%), making them ideal for real-world applications. By overcoming the drawbacks of conventional materials and methods, this work sets a new standard for carbon microelectromechanical systems technology, paving the way for safer, more effective, and scalable transdermal drug delivery systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Dissolving microneedles for transdermal drug delivery
    Lee, Jeong W.
    Park, Jung-Hwan
    Prausnitz, Mark R.
    BIOMATERIALS, 2008, 29 (13) : 2113 - 2124
  • [22] Microneedles for intradermal and transdermal drug delivery
    Tuan-Mahmood, Tuan-Mazlelaa
    McCrudden, Maeliosa T. C.
    Torrisi, Barbara M.
    McAlister, Emma
    Garland, Martin J.
    Singh, Thakur Raghu Raj
    Donnelly, Ryan F.
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2013, 50 (05) : 623 - 637
  • [23] Transdermal microneedles for drug delivery applications
    Teo, Ai Ling
    Shearwood, Christopher
    Ng, Kian Chye
    Lu, Jia
    Moochhala, Shabbir
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 132 (1-2): : 151 - 154
  • [24] Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery
    Roxhed, Niclas
    Griss, Patrick
    Stemme, Goran
    BIOMEDICAL MICRODEVICES, 2008, 10 (02) : 271 - 279
  • [25] Finite Element Analysis of Hollow HfO2 Microneedles for Transdermal Drug Delivery
    Zhang, Yong-hua
    Tian, Yinghong
    Campbell, Stephen A.
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [26] Design and Scalable Fabrication of Hollow SU-8 Microneedles for Transdermal Drug Delivery
    Mishra, Richa
    Matti, Tapas Kumar
    Bhattacharyya, Tarun Kanti
    IEEE SENSORS JOURNAL, 2018, 18 (14) : 5635 - 5644
  • [27] Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery
    Niclas Roxhed
    Patrick Griss
    Göran Stemme
    Biomedical Microdevices, 2008, 10 : 271 - 279
  • [28] Zeolite microneedles for transdermal drug delivery
    Wong, L. W.
    Sun, W. Q.
    Chan, N. W.
    Lai, W. Y.
    Leung, W. K.
    Tsang, J. C.
    Wong, Y. H.
    Yeung, K. L.
    FROM ZEOLITES TO POROUS MOF MATERIALS: THE 40TH ANNIVERSARY OF INTERNATIONAL ZEOLITE CONFERENCE, PROCEEDINGS OF THE 15TH INTERNATIONAL ZEOLITE CONFERENCE, 2007, 170 : 525 - 530
  • [29] Microfabricated microneedles for transdermal drug delivery
    Prausnitz, Mark R.
    McAllister, Devin V.
    Kaushik, Shilpa
    Patel, Parul N.
    Mayberry, Jennifer L.
    Allen, Mark G.
    American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, 1999, 42 : 89 - 90
  • [30] Transdermal Delivery of Insulin via Microneedles
    Narayan, Roger J.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (09) : 2244 - 2260