Automatic Classification of Signal and Noise in Functional Magnetic Resonance Imaging Scans Using Convolutional Neural Networks

被引:0
|
作者
Arighelescu, Georgian [1 ]
Chira, Camelia [1 ]
Mansson, Kristoffer N. T. [2 ,3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
[2] Babes Bolyai Univ, Dept Clin Psychol & Psychotherapy, Cluj Napoca, Romania
[3] Karolinska Inst, Ctr Psychiat Res, Dept Clin Neurosci, Stockholm, Sweden
关键词
fMRI; Artificial Intelligence; Deep Learning; CNN; VGG16; ResNet50; INDEPENDENT COMPONENT ANALYSIS;
D O I
10.1007/978-3-031-77731-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of Artificial Intelligence (AI), particularly deep learning models like VGG16 and ResNet50, in the analysis of functional magnetic resonance imaging (fMRI) data has significantly advanced our understanding of brain functionality and the diagnosis of neurological disorders. This paper explores the application of Convolutional Neural Networks (CNNs) to enhance the accuracy and efficiency of fMRI data analysis, addressing challenges such as high dimensionality, noise, and the need for complex data preprocessing. Our study evaluates the performance of VGG16 and ResNet50 models and one 3D CNN on 2D and 3D fMRI datasets, highlighting the limitations of VGG16 in handling 2D data and demonstrating the superior performance of ResNet50 on balanced and unbalanced datasets. Additionally, we investigate the impact of using 3D data from the Human Connectome Project (HCP), achieving up to 98% accuracy on the validation set. The results indicate that CNNs can effectively replace traditional Independent Component Analysis (ICA) methods by leveraging their capability for automatic feature extraction and end-to-end learning.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [41] Automatic Classification of Requirements Based on Convolutional Neural Networks
    Winkler, Jonas
    Vogelsang, Andreas
    2016 IEEE 24TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW), 2016, : 39 - 45
  • [42] Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging
    Liu, George S.
    Yang, Angela
    Kim, Dayoung
    Hojel, Andrew
    Voevodsky, Diana
    Wang, Julia
    Tong, Charles C. L.
    Ungerer, Heather
    Palmer, James N.
    Kohanski, Michael A.
    Nayak, Jayakar, V
    Hwang, Peter H.
    Adappa, Nithin D.
    Patel, Zara M.
    INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2022, 12 (08) : 1025 - 1033
  • [43] Subject-Specific Convolutional Neural Networks for Accelerated Magnetic Resonance Imaging
    Akcakaya, Mehmet
    Moeller, Steen
    Weingaertner, Sebastian
    Ugurbil, Kamil
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [44] Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging
    Cabeza-Ruiz, Robin
    Velazquez-Perez, Luis
    Linares-Barranco, Alejandro
    Perez-Rodriguez, Roberto
    SENSORS, 2022, 22 (04)
  • [45] Classification of Non-functional Requirements Using Convolutional Neural Networks
    Garcia, S. E. Martinez
    Fernandez-y-Fernandez, C. Alberto
    Perez, E. G. Ramos
    PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (08) : 705 - 711
  • [46] Classification of Non-functional Requirements Using Convolutional Neural Networks
    S. E. Martínez García
    C. Alberto Fernández-y-Fernández
    E. G. Ramos Pérez
    Programming and Computer Software, 2023, 49 : 705 - 711
  • [47] Convolutional Neural Networks for Noise Classification and Denoising of Images
    Sil, Dibakar
    Dutta, Arindam
    Chandra, Aniruddha
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 447 - 451
  • [48] Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
    Khalili, Nadieh
    Turk, E.
    Benders, M. J. N. L.
    Moeskops, P.
    Claessens, N. H. P.
    de Heus, R.
    Franx, A.
    Wagenaar, N.
    Breur, J. M. P. J.
    Viergever, M. A.
    Isgum, I.
    NEUROIMAGE-CLINICAL, 2019, 24
  • [49] Mineral Classification using Convolutional Neural Networks and SWIR Hyperspectral Imaging
    Cifuentes, Jose I.
    Arias, Luis E.
    Pirard, Eric
    Castillo, Fernando
    AI AND OPTICAL DATA SCIENCES V, 2024, 12903
  • [50] Speech Signal Classification Based on Convolutional Neural Networks
    Zhang, Xiaomeng
    Sun, Hao
    Wang, Shuopeng
    Xu, Jing
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II, 2019, 1006 : 281 - 287