Numerical solutions of multi-term fractional reaction-diffusion equations

被引:0
|
作者
Zou, Leqiang [1 ]
Zhang, Yanzi [2 ]
机构
[1] Henan Coll Ind & Informat Technol, Jiaozuo 454000, Henan, Peoples R China
[2] Henan Jiaozuo Normal Coll, Jiaozuo 454000, Henan, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
关键词
fractional reaction-diffusion equation; time-fractional derivative; ultra-slow diffusion; stability; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE METHOD; ELEMENT-METHOD; CONVERGENCE; APPROXIMATIONS; STABILITY; SCHEMES;
D O I
10.3934/math.2025036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have proposed a numerical approach based on generalized alternating numerical fluxes to solve the multi-term fractional reaction-diffusion equation. This type of equation frequently arises in the mathematical modeling of ultra-slow diffusion phenomena observed in various physical problems. These phenomena are characterized by solutions that exhibit logarithmic decay as time t approaches infinity. For spatial discretization, we employed the discontinuous Galerkin method with generalized alternating numerical fluxes. Temporal discretization was handled using the finite difference method. To ensure the robustness of the proposed scheme, we rigorously established its unconditional stability through mathematical induction. Finally, we conducted a series of comprehensive numerical experiments to validate the accuracy and efficiency of the scheme, demonstrating its potential for practical applications.
引用
收藏
页码:777 / 792
页数:16
相关论文
共 50 条
  • [1] ANALYTICAL SOLUTIONS FOR THE MULTI-TERM TIME-SPACE FRACTIONAL REACTION-DIFFUSION EQUATIONS ON AN INFINITE DOMAIN
    Ding, Xiao-Li
    Nieto, Juan J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 697 - 716
  • [2] Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain
    Xiao-Li Ding
    Juan J. Nieto
    Fractional Calculus and Applied Analysis, 2015, 18 : 697 - 716
  • [3] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [4] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [5] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [6] Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions
    Chawla, Reetika
    Kumar, Devendra
    Vigo-Aguiar, J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2025, 63 (01) : 237 - 266
  • [7] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [8] Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations
    El-Sayed, A. M. A.
    El-Kalla, I. L.
    Ziada, E. A. A.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (08) : 788 - 797
  • [9] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [10] Numerical solution of multi-term fractional differential equations
    Katsikadelis, John T.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (07): : 593 - 608