Application of Machine Learning and Deep Learning Algorithms for Landslide Susceptibility Assessment in Landslide Prone Himalayan Region

被引:0
|
作者
Bhattacharya, Subhasis [1 ]
Ali, Tarig [2 ]
Chakravortti, Sudip [11 ]
Pal, Tapas [3 ]
Majee, Barun Kumar [1 ]
Mondal, Ayan [8 ]
Pande, Chaitanya B. [6 ,7 ]
Bilal, Muhammad [9 ,10 ]
Rahman, Muhammad Tauhidur [4 ]
Chakrabortty, Rabin [5 ]
机构
[1] Sidho Kanho Birsha Univ, Dept Econ, Purulia, WB, India
[2] Amer Univ Sharjah, Dept Civil Engn, POB 26666, Sharjah, U Arab Emirates
[3] Raiganj Univ, Dept Geog, Raiganj 733134, West Bengal, India
[4] Univ Texas Dallas, Sch Econ Polit & Policy Sci, Geospatial Informat Sci Program, Richardson, TX 75023 USA
[5] Asian Inst Technol, Sch Environm Resources & Dev, Khlong Nueng 12120, Phatum Thani, Thailand
[6] Univ Tenaga Nas, Inst Energy Infrastruct, Kajang 43000, Malaysia
[7] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar 64001, Iraq
[8] Govt Gen Degree Coll, Dept Zool, Mohanpur 721436, India
[9] King Fahd Univ Petr & Minerals KFUPM, Architecture & City Desing Dept ACD, Dhahran 31261, Saudi Arabia
[10] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Aviat & Space Explorat I, Dhahran 31261, Saudi Arabia
[11] Sidho Kanho Birsha Univ, Dept Sanskrit, Purulia 723104, India
关键词
Chamoli District; Deep Learning Algorithms; GIS-based Susceptibility Mapping; Landslide Susceptibility; Machine Learning; Natural Disaster; Uttarakhand; NEURAL-NETWORKS; MODEL;
D O I
10.1007/s41748-024-00530-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslides are an unpredictable natural disaster, but steps can be taken to reduce their impact. The Landslide Susceptibility Index plays a critical role in minimizing the risk of living in landslide-prone areas. Effective planning and management of these locations are essential. In recent years, statistical methods and, increasingly, machine learning-based approaches have gained popularity for landslide susceptibility modeling. This study employs various machine learning and deep learning algorithms, specifically Random Forest (RF), Artificial Neural Network (ANN), and Deep Learning Neural Network (DLNN), to estimate landslide susceptibility in Chamoli district, Uttarakhand, India-a region that witnessed over a thousand landslides in 2023. We carefully selected relevant metrics based on existing research and conducted a multicollinearity analysis on each parameter to ensure the model's accuracy. We randomly split the data into training and validation sets in a 70/30 ratio. Among the models used, the DLNN outperformed others, superiorly predicting landslide susceptibility. These findings are valuable for local government efforts in disaster prevention and mitigation, particularly in the Chamoli District of Uttarakhand, where Geographical Information System (GIS)-based susceptibility mapping plays a critical role in identifying vulnerable areas. Overall, this model evaluation framework can be used as a guide to select the most suitable modelling strategy for assessing landslide susceptibility. This type of outcome is valuable to the decision-maker to implement a more optimal strategy for reducing the probability of landslides and its associated damages.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models
    Chen, Cheng
    Fan, Lei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023,
  • [42] Deep learning and benchmark machine learning based landslide susceptibility investigation, Garhwal Himalaya (India)
    Saha, Soumik
    Majumdar, Paromita
    Bera, Biswajit
    QUATERNARY SCIENCE ADVANCES, 2023, 10
  • [43] Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential
    Aslam, Bilal
    Zafar, Adeel
    Khalil, Umar
    SOFT COMPUTING, 2021, 25 (21) : 13493 - 13512
  • [44] Machine learning driven landslide susceptibility prediction for the Uttarkashi region of Uttarakhand in India
    Kainthura, Poonam
    Sharma, Neelam
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (03) : 570 - 583
  • [45] Machine learning with a susceptibility index-based sampling strategy for landslide susceptibility assessment
    Liu, Lei-Lei
    Zhang, Yi-Li
    Zhang, Shao-He
    Shu, Biao
    Xiao, Ting
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15683 - 15713
  • [46] A Study on Development of Landslide Susceptibility Map in Malaysia Landslide Prone Areas by Using Geographic Information System (GIS) and Machine Learning
    Martin, Dorothy
    Chai, Soo See
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 386 - 391
  • [47] LANDSLIDE SUSCEPTIBILITY MAPPING USING MACHINE LEARNING ALGORITHMS STUDY CASE AL HOCEIMA REGION, NORTHERN MOROCCO
    Himmy, Oussama
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 153 - 158
  • [48] Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling
    Vu Viet Nguyen
    Binh Thai Pham
    Ba Thao Vu
    Prakash, Indra
    Jha, Sudan
    Shahabi, Himan
    Shirzadi, Ataollah
    Dong Nguyen Ba
    Kumar, Raghvendra
    Chatterjee, Jyotir Moy
    Dieu Tien Bui
    FORESTS, 2019, 10 (02):
  • [49] Landslide Susceptibility Mapping using Machine Learning Algorithm
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Wang, Run
    Shah, Safeer Ullah
    Shoaib, Muhammad
    Ali, Nafees
    Xu, Daozhu
    Ma, Chao
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2022, 8 (02): : 209 - 224
  • [50] Effects of Variable Selection on the Landslide Susceptibility Assessment using Machine Learning Techniques
    Park, Soyoung
    Son, Sanghun
    Han, Jihye
    Lee, Seonghyeock
    Kim, Seongheon
    Kim, Jinsoo
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS X, 2019, 11156