First-order planar autoregressive model

被引:0
|
作者
Shklyar, Sergiy [1 ,2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[2] Sci Ctr Aerosp Res Earth, Kyiv, Ukraine
来源
关键词
autoregressive models; causality; discrete random fields; purely nondeterministic; random fields; stationary random fields; UNIT ROOTS;
D O I
10.15559/24-VMSTA263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes the conditions of existence of a stationary solution to the first order autoregressive equation on a plane as well as properties of the stationarity solution. The first-order autoregressive model on a plane is defined by the equation X-i,X-j=aX(i-1),(j)+bX(i,j-1)+cX(i-1),(j-1)+& varepsilon;(i,j). A stationary solution X to the equation exists if and only if (1-a-b-c)(1-a+b+c)(1+a-b+c)(1+a+b-c)>0. The stationary solution X satisfies the causality condition with respect to the white noise & varepsilon; if and only if 1-a-b-c>0, 1-a+b+c>0, 1+a-b+c>0 and 1+a+b-c>0. A sufficient condition for X to be purely nondeterministic is provided. An explicit expression for the autocovariance function of X at some points is provided. With Yule-Walker equations, this allows to compute the autocovariance function everywhere. In addition, all situations are described where different parameters determine the same autocovariance function of X.
引用
收藏
页码:83 / 121
页数:39
相关论文
共 50 条