First-order planar autoregressive model

被引:0
|
作者
Shklyar, Sergiy [1 ,2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[2] Sci Ctr Aerosp Res Earth, Kyiv, Ukraine
来源
关键词
autoregressive models; causality; discrete random fields; purely nondeterministic; random fields; stationary random fields; UNIT ROOTS;
D O I
10.15559/24-VMSTA263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes the conditions of existence of a stationary solution to the first order autoregressive equation on a plane as well as properties of the stationarity solution. The first-order autoregressive model on a plane is defined by the equation X-i,X-j=aX(i-1),(j)+bX(i,j-1)+cX(i-1),(j-1)+& varepsilon;(i,j). A stationary solution X to the equation exists if and only if (1-a-b-c)(1-a+b+c)(1+a-b+c)(1+a+b-c)>0. The stationary solution X satisfies the causality condition with respect to the white noise & varepsilon; if and only if 1-a-b-c>0, 1-a+b+c>0, 1+a-b+c>0 and 1+a+b-c>0. A sufficient condition for X to be purely nondeterministic is provided. An explicit expression for the autocovariance function of X at some points is provided. With Yule-Walker equations, this allows to compute the autocovariance function everywhere. In addition, all situations are described where different parameters determine the same autocovariance function of X.
引用
收藏
页码:83 / 121
页数:39
相关论文
共 50 条
  • [21] Empirical likelihood for first-order mixed integer-valued autoregressive model
    Yang Yan-qiu
    Wang De-hui
    Zhao Zhi-wen
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (03) : 313 - 322
  • [22] Weighted L1-estimates for the First-order Bifurcating Autoregressive Model
    Elbayoumi, Tamer M.
    Terpstra, Jeff
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (08) : 2991 - 3013
  • [23] A Comparison of Parameter Estimation Methods for the First-Order of Random Coefficient Autoregressive Model
    Araveeporn, Autcha
    THAILAND STATISTICIAN, 2022, 20 (04): : 892 - 904
  • [24] Empirical likelihood for first-order mixed integer-valued autoregressive model
    Yan-qiu Yang
    De-hui Wang
    Zhi-wen Zhao
    Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 313 - 322
  • [25] A New First-Order Integer-Valued Autoregressive Model with Bell Innovations
    Huang, Jie
    Zhu, Fukang
    ENTROPY, 2021, 23 (06)
  • [26] The First-Order Nonlinear Autoregressive Model with Skew Normal Innovations: A Semiparametric Approach
    Hajrajabi, Arezo
    Mortazavi, Seyed Javad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 579 - 587
  • [27] The First-Order Nonlinear Autoregressive Model with Skew Normal Innovations: A Semiparametric Approach
    Arezo Hajrajabi
    Seyed Javad Mortazavi
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 579 - 587
  • [28] On the estimation bias in first-order bifurcating autoregressive models
    Elbayoumi, Tamer M.
    Mostafa, Sayed A.
    STAT, 2021, 10 (01):
  • [29] On modelling of FIR filters with first-order autoregressive errors
    Bayhan, GM
    Bayhan, M
    MODELLING AND SIMULATION 1996, 1996, : 813 - 817
  • [30] Interval Estimation for a First-Order Positive Autoregressive Process
    Hsiao, Wei-Cheng
    Huang, Hao-Yun
    Ing, Ching-Kang
    JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (03) : 447 - 467