First-order planar autoregressive model

被引:0
|
作者
Shklyar, Sergiy [1 ,2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kyiv, Ukraine
[2] Sci Ctr Aerosp Res Earth, Kyiv, Ukraine
来源
关键词
autoregressive models; causality; discrete random fields; purely nondeterministic; random fields; stationary random fields; UNIT ROOTS;
D O I
10.15559/24-VMSTA263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes the conditions of existence of a stationary solution to the first order autoregressive equation on a plane as well as properties of the stationarity solution. The first-order autoregressive model on a plane is defined by the equation X-i,X-j=aX(i-1),(j)+bX(i,j-1)+cX(i-1),(j-1)+& varepsilon;(i,j). A stationary solution X to the equation exists if and only if (1-a-b-c)(1-a+b+c)(1+a-b+c)(1+a+b-c)>0. The stationary solution X satisfies the causality condition with respect to the white noise & varepsilon; if and only if 1-a-b-c>0, 1-a+b+c>0, 1+a-b+c>0 and 1+a+b-c>0. A sufficient condition for X to be purely nondeterministic is provided. An explicit expression for the autocovariance function of X at some points is provided. With Yule-Walker equations, this allows to compute the autocovariance function everywhere. In addition, all situations are described where different parameters determine the same autocovariance function of X.
引用
收藏
页码:83 / 121
页数:39
相关论文
共 50 条
  • [1] Noise analysis of a first-order autoregressive model
    Department of Applied Physics, National Defense Academy, Hashirimizu1-10-20, Yokosuka-shi, Kanagawa, 239-8686, Japan
    Nihon Kikai Gakkai Ronbunshu C, 780 (3017-3024):
  • [2] Lindley first-order autoregressive model with applications
    Bakouch, Hassan S.
    Popovic, Bozidar V.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) : 4988 - 5006
  • [3] IMPROVED TESTS FOR THE FIRST-ORDER AUTOREGRESSIVE MODEL WITH HETEROSCEDASTICITY
    LYON, J
    TSAI, CL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 52 (01) : 71 - 83
  • [4] Information Theory Estimators for the First-Order Spatial Autoregressive Model
    Perevodchikov, Evgeniy V.
    Marsh, Thomas L.
    Mittelhammer, Ron C.
    ENTROPY, 2012, 14 (07) : 1165 - 1185
  • [5] Is First-Order Vector Autoregressive Model Optimal for fMRI Data?
    Ting, Chee-Ming
    Seghouane, Abd-Krim
    Khalid, Muhammad Usman
    Salleh, Sh-Hussain
    NEURAL COMPUTATION, 2015, 27 (09) : 1857 - 1871
  • [6] Bayesian estimation for first-order autoregressive model with explanatory variables
    Yang, Kai
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11214 - 11227
  • [7] Likelihood analysis of a first-order autoregressive model with exponential innovations
    Nielsen, B
    Shephard, N
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (03) : 337 - 344
  • [8] ESTIMATION OF RHO IN FIRST-ORDER AUTOREGRESSIVE MODEL - BAYESIAN APPROACH
    LENTON, RL
    RODRIGUEZ-ITURBE, I
    SCHAAKE, JC
    WATER RESOURCES RESEARCH, 1974, 10 (02) : 227 - 241
  • [9] Diagnostics for a Linear Model with First-Order Autoregressive Symmetrical Errors
    Zhu, Xiao-Xin
    Zhu, Bin
    Cao, Chun-Zheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (13) : 2335 - 2350
  • [10] Adaptive Estimation of Periodic First-Order Threshold Autoregressive Model
    Bentarzi, M.
    Djeddou, L.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (07) : 1611 - 1630