autoregressive models;
causality;
discrete random fields;
purely nondeterministic;
random fields;
stationary random fields;
UNIT ROOTS;
D O I:
10.15559/24-VMSTA263
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper establishes the conditions of existence of a stationary solution to the first order autoregressive equation on a plane as well as properties of the stationarity solution. The first-order autoregressive model on a plane is defined by the equation X-i,X-j=aX(i-1),(j)+bX(i,j-1)+cX(i-1),(j-1)+& varepsilon;(i,j). A stationary solution X to the equation exists if and only if (1-a-b-c)(1-a+b+c)(1+a-b+c)(1+a+b-c)>0. The stationary solution X satisfies the causality condition with respect to the white noise & varepsilon; if and only if 1-a-b-c>0, 1-a+b+c>0, 1+a-b+c>0 and 1+a+b-c>0. A sufficient condition for X to be purely nondeterministic is provided. An explicit expression for the autocovariance function of X at some points is provided. With Yule-Walker equations, this allows to compute the autocovariance function everywhere. In addition, all situations are described where different parameters determine the same autocovariance function of X.
机构:
King Abdulaziz Univ, Dept Stat, Fac Sci, Jeddah, Saudi Arabia
Tanta Univ, Dept Math, Fac Sci, Tanta, EgyptKing Abdulaziz Univ, Dept Stat, Fac Sci, Jeddah, Saudi Arabia
Bakouch, Hassan S.
Popovic, Bozidar V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montenegro, Fac Philosophy, Niksic, MontenegroKing Abdulaziz Univ, Dept Stat, Fac Sci, Jeddah, Saudi Arabia