Influence of Cold Drawing on Phase Transformation and Tensile Properties of FeCrMn Austenitic Stainless Steel 201

被引:0
|
作者
Masoumi, Mohammad [1 ]
de Oliveira, Silvio E. [1 ]
Paredes, Marcelo [2 ]
机构
[1] Fed Univ ABC, Ctr Engn Modeling & Appl Social Sci, BR-09210580 Santo Andre, SP, Brazil
[2] Texas A&M Univ, Dept Ocean Engn, Galveston, TX 77554 USA
关键词
crystal orientations; dislocation densities; martensitic transformations; microstructural evolutions; MULTISCALE CHARACTERIZATION; MARTENSITE; REVERSION; MECHANISMS; HCP;
D O I
10.1002/srin.202400469
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Manganese stabilizes the austenite and reduces the stacking fault energy in face-centered cubic (FCC) structures, promoting the formation of hexagonal and cubic structures. This study investigates the phase transformation and mechanical behavior of extremely low-carbon FeCrMn austenitic stainless AISI 201 steel subjected to cold drawing in three stages, ultimately reaching a true strain of 0.93. The objective is to examine the transformation from the parent FCC structure to hexagonal close-packed and body-centered cubic structures as a combination of transformation-induced plasticity and twinning-induced plasticity phenomena. X-ray diffraction and electron backscatter diffraction analyses are utilized to investigate phase transformations under significant plastic deformation and the crystallographic orientation relationships between phases. Additionally, tensile and hardness tests are performed to assess the impact of plastic deformation on mechanical properties. Results indicate that a true strain of 50% is optimal for balancing strength and ductility in CrMnFe austenitic stainless steel. After applying a true strain of epsilon 1 = 26.7%, yield strength (YS) increases by 192% and ultimate tensile strength (UTS) by 35%, while elongation reduces by 41%. With a further strain of epsilon 2 = 57.5%, YS increases by 71% and UTS by 44%, but elongation drastically decreases by 94%. Applying the final strain of epsilon 3 = 94.0%, YS and UTS only increase by 3% and 2%, respectively, while elongation further reduced by 40%. These findings suggest that a true strain of 50% shall be considered the maximum reduction for maintaining a balance between strength and ductility in CrMnFe austenitic stainless steel.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The influence of austenite texture on the martensitic transformation of an austenitic stainless steel
    Hilkhuijsen, P.
    Geijselaers, H. J. M.
    Bor, T. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : S609 - S613
  • [22] ON THE DEVELOPMENT OF DEFORMATION AND TRANSFORMATION TEXTURES DURING COLD DRAWING IN AUSTENITIC STAINLESS-STEELS
    INAKAZU, N
    YAMAMOTO, H
    ISHIO, M
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1984, 48 (01) : 71 - 78
  • [23] PLASTIC DEFORMATION AND PHASE TRANSFORMATION IN TEXTURED AUSTENITIC STAINLESS STEEL
    CHIN, GY
    SCRIPTA METALLURGICA, 1971, 5 (04): : 251 - &
  • [24] PLASTIC DEFORMATION AND PHASE TRANSFORMATION IN TEXTURED AUSTENITIC STAINLESS STEEL
    GOODCHILD, D
    ROBERTS, WT
    WILSON, DV
    ACTA METALLURGICA, 1970, 18 (11): : 1137 - +
  • [25] INVESTIGATION ON FATIGUE PROPERTIES OF COLD STRETCHED AUSTENITIC STAINLESS STEEL
    Miao, Cunjian
    Zheng, Jinyang
    Ma, Li
    Ye, Duyi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS, 2012, : 1019 - 1025
  • [26] PROPERTIES OF A NEW STAINLESS AUSTENITIC STEEL WITH IMPROVED TENSILE-STRENGTH
    KALISZEWSKI, E
    GROCHLA, H
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1994, 45 (11): : 608 - 614
  • [27] Tensile properties of mechanically alloyed Zr added austenitic stainless steel
    Morrall, Daniel
    Gao, Jin
    Zhang, Zhexian
    Yabuuchi, Kiyohiro
    Kimura, Akihiko
    Ishizaki, Takahiro
    Maruno, Yusaku
    NUCLEAR MATERIALS AND ENERGY, 2018, 15 : 92 - 96
  • [28] Influence of Phase Transformation on the Resistance to Intergranular Corrosion in the Seam of Austenitic Stainless Steel Welds.
    Zingales, A.
    Marziali, S.
    Quartarone, G.
    Tiziani, A.
    Magrini, M.
    Rivista Italiana della Saldatura, 1980, 32 (05): : 317 - 325
  • [29] The influence of hydrostatic extrusion on the properties of an austenitic stainless steel
    Budniak, Julia
    Lewandowska, Malgorzata
    Pachla, Waclaw
    Kulczyk, Mariusz
    Kurzydlowski, Krzysztof J.
    HIGH PRESSURE TECHNOLOGY OF NANOMATERIALS, 2006, 114 : 57 - 62
  • [30] Tensile properties of low nickel austenitic stainless steel at elevated temperatures
    Liu Shu-min
    Zhang Jian-bin
    ADVANCED MANUFACTURING TECHNOLOGY AND SYSTEMS, 2012, 159 : 346 - +