A pro-p version of Sela's accessibility and Poincaré duality pro-p groups

被引:1
|
作者
Castellano, Ilaria [1 ]
Zalesskii, Pavel A. [2 ]
机构
[1] Bielefeld Univ, Fac Math, Univ str 25, D-33501 Bielefeld, Germany
[2] Univ Brasilia, Dept Math, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, Brazil
关键词
Pro-p groups; pro-p trees; k-acylindrical; accessibility; !text type='JS']JS[!/text]J-decomposition; FINITELY PRESENTED GROUPS; SPLITTINGS; PROFINITE;
D O I
10.4171/GGD/769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a pro-p version of Sela's theorem (1997) stating that a finitely generated group is k-acylindrically accessible. This result is then used to prove that PDn n pro-p groups admit a unique k-acylindrical JSJ-decomposition.
引用
收藏
页码:1349 / 1368
页数:20
相关论文
共 50 条
  • [31] Profinite and pro-p completions of poincare duality groups of dimension 3
    Kochloukova, Dessislava H.
    Zalesskii, Pavel A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (04) : 1927 - 1949
  • [32] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [33] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [34] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [35] Pro-p link groups and p-homology groups
    Hillman, Jonathan
    Matei, Daniel
    Morishita, Masanori
    PRIMES AND KNOTS, 2006, 416 : 121 - 136
  • [36] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254
  • [37] Small maximal pro-p Galois groups
    Efrat, I
    MANUSCRIPTA MATHEMATICA, 1998, 95 (02) : 237 - 249
  • [38] Groups with the same cohomology as their pro-p completions
    Lorensen, Karl
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) : 6 - 14
  • [39] Free-by-Demushkin pro-p groups
    Kochloukova, DH
    Zalesskii, P
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 731 - 739
  • [40] p-Projective groups and pro-p trees
    Weigel, Thomas
    ISCHIA: GROUP THEORY 2008, 2009, : 265 - 296