A pro-p version of Sela's accessibility and Poincaré duality pro-p groups

被引:1
|
作者
Castellano, Ilaria [1 ]
Zalesskii, Pavel A. [2 ]
机构
[1] Bielefeld Univ, Fac Math, Univ str 25, D-33501 Bielefeld, Germany
[2] Univ Brasilia, Dept Math, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, Brazil
关键词
Pro-p groups; pro-p trees; k-acylindrical; accessibility; !text type='JS']JS[!/text]J-decomposition; FINITELY PRESENTED GROUPS; SPLITTINGS; PROFINITE;
D O I
10.4171/GGD/769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a pro-p version of Sela's theorem (1997) stating that a finitely generated group is k-acylindrically accessible. This result is then used to prove that PDn n pro-p groups admit a unique k-acylindrical JSJ-decomposition.
引用
收藏
页码:1349 / 1368
页数:20
相关论文
共 50 条
  • [21] PRO-P GROUPS OF FINITE COCLASS
    SHALEV, A
    ZELMANOV, EI
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 417 - 421
  • [22] Relatively projective pro-p groups
    Haran, Dan
    Zalesskii, Pavel A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 313 - 352
  • [23] On pro-p groups with quadratic cohomology
    Quadrelli, C.
    Snopce, I.
    Vannacci, M.
    JOURNAL OF ALGEBRA, 2022, 612 : 636 - 690
  • [24] Omega subgroups of pro-p groups
    Gustavo A. Fernández-Alcober
    Jon González-Sánchez
    Andrei Jaikin-Zapirain
    Israel Journal of Mathematics, 2008, 166
  • [25] Pro-p groups of positive deficiency
    Hillman, Jonathan A.
    Schmidt, Alexander
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 1065 - 1069
  • [26] Weak commutativity for pro-p groups
    Dessislava H. Kochloukova
    Luís Mendonça
    Monatshefte für Mathematik, 2021, 194 : 555 - 575
  • [27] Pro-p groups of finite width
    Camina, AR
    Camina, RD
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1583 - 1593
  • [28] p-Johnson homomorphisms and pro-p groups
    Morishita, Masanori
    Terashima, Yuji
    JOURNAL OF ALGEBRA, 2017, 479 : 102 - 136
  • [29] p-extensions of free pro-p groups
    Herfort, WN
    Ribes, L
    Zalesskii, PA
    FORUM MATHEMATICUM, 1999, 11 (01) : 49 - 61
  • [30] Character degrees of p-groups and pro-p groups
    Golsefidy, AS
    JOURNAL OF ALGEBRA, 2005, 286 (02) : 476 - 491