Nearly parallel G2-manifolds: formality and associative submanifolds

被引:0
|
作者
Fernandez, Marisa [1 ]
Fino, Anna [2 ,3 ]
Kovalev, Alexei [4 ]
Munoz, Vicente [5 ]
机构
[1] Univ Pais Vasco UPV EHU, Dept Matemat, Fac Ciencias & Tecnol, Bilbao 48080, Spain
[2] Univ Turin, Dipartimento Matemat Giuseppe Peano, I-10123 Turin, Italy
[3] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[4] Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, England
[5] Univ Complutense Madrid, Fac Ciencias Matemat, Madrid 28040, Spain
关键词
KAHLER-EINSTEIN METRICS; RIEMANNIAN-MANIFOLDS; 7-MANIFOLDS; CLASSIFICATION; DEFORMATIONS; PRODUCTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct new examples of non-formal simply connected compact Sasaki-Einstein 7-manifolds. We determine the minimal model of the total space of any fibre bundle over CP2 with fibre S-1 x S-2 or a lens space S-3/Z(p) (p > 0), and we apply this to conclude that the Aloff-Wallach spaces are formal. We also find examples of formal manifolds and non-formal manifolds, which are locally conformal parallel Spin(7)-manifolds. On the other hand, we construct associative minimal submanifolds in the Aloff-Wallach spaces and in any regular Sasaki-Einstein 7-manifold; in particular, in the space Q(1, 1, 1) = SU(2) x SU(2) x SU(2)) / U(1) x U(1)) with the natural S-1-family of nearly parallel G2-structures induced by the SasakiEinstein structure. In each of those cases, we obtain a family of non-trivial associative deformations.
引用
收藏
页码:1391 / 1434
页数:44
相关论文
共 50 条
  • [21] Coulomb and Higgs phases of G2-manifolds
    Acharya, B. S.
    Baldwin, D. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [22] Deformations of asymptotically cylindrical G2-manifolds
    Nordstroem, Johannes
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 311 - 348
  • [23] Locally conformal calibrated G2-manifolds
    Fernandez, Marisa
    Fino, Anna
    Raffero, Alberto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1721 - 1736
  • [24] Iterated collapsing phenomenon on G2-manifolds
    Li, Yang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (03) : 971 - 1036
  • [25] Coulomb and Higgs phases of G2-manifolds
    B. S. Acharya
    D. A. Baldwin
    Journal of High Energy Physics, 2024
  • [26] G2-manifolds and coassociative torus fibration
    Fang, Fuquan
    Zhang, Yuguang
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (01) : 49 - 77
  • [27] GENERALIZED G2-MANIFOLDS AND SU(3)-STRUCTURES
    Fino, Anna
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (10) : 1147 - 1165
  • [28] Spinorial description of SU(3)- and G2-manifolds
    Agricola, Ilka
    Chiossi, Simon G.
    Friedrich, Thomas
    Hoell, Jos
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 535 - 555
  • [29] U(1)-Gauge Theories on G2-Manifolds
    Hu, Zhi
    Zong, Runhong
    ANNALES HENRI POINCARE, 2024, 25 (05): : 2453 - 2487
  • [30] EXISTENCE OF COMPATIBLE CONTACT STRUCTURES ON G2-MANIFOLDS
    Arikan, M. Firat
    Cho, Hyunjoo
    Salur, Sema
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (02) : 321 - 333