Towards Cycle-based Shuttling for Trapped-Ion Quantum Computers (Extended Abstract)

被引:0
|
作者
Schoenberger, Daniel [1 ]
Hillmich, Stefan [2 ]
Brandl, Matthias [3 ]
Wille, Robert [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Design Automat, Munich, Germany
[2] Software Competence Ctr Hagenberg GmbH, Hagenberg, Austria
[3] Infineon Technol AG, Dresden, Germany
关键词
D O I
10.23919/DATE58400.2024.10546506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Quantum Charge Coupled Device (QCCD) architecture offers a modular solution to enable the realization of trapped-ion quantum computers with a large number of qubits. Within these devices, ions can be shuttled (moved) throughout the trap and through different dedicated zones. However, due to decoherence of the ions' quantum states, the qubits lose their quantum information over time. Thus, the shuttling needed for these shuttling operations should be minimized. In this extended abstract, we propose a concept towards a cycle-based heuristic approach to determining an efficient shuttling schedule for a given quantum circuit.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Strategies for a practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computers
    Heussen, Sascha
    Postler, Lukas
    Rispler, Manuel
    Pogorelov, Ivan
    Marciniak, Christian D.
    Monz, Thomas
    Schindler, Philipp
    Mueller, Markus
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [42] Pulse optimization for high-precision motional-mode characterization in trapped-ion quantum computers
    Liang, Qiyao
    Kang, Mingyu
    Li, Ming
    Nam, Yunseong
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03)
  • [43] Reversible Measurement on Quantum States of Trapped-Ion Qubits
    徐酉阳
    周飞
    Communications in Theoretical Physics, 2010, 53 (03) : 469 - 472
  • [44] Control of trapped-ion quantum states with optical pulses
    Rangan, C
    Bloch, AM
    Monroe, C
    Bucksbaum, PH
    PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 113004 - 1
  • [45] Fast quantum logic gates with trapped-ion qubits
    V. M. Schäfer
    C. J. Ballance
    K. Thirumalai
    L. J. Stephenson
    T. G. Ballance
    A. M. Steane
    D. M. Lucas
    Nature, 2018, 555 : 75 - 78
  • [46] Simple experimental methods for trapped-ion quantum processors
    Stevens, D
    Brochard, J
    Steane, AM
    PHYSICAL REVIEW A, 1998, 58 (04): : 2750 - 2759
  • [47] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [48] Demonstration of the trapped-ion quantum CCD computer architecture
    J. M. Pino
    J. M. Dreiling
    C. Figgatt
    J. P. Gaebler
    S. A. Moses
    M. S. Allman
    C. H. Baldwin
    M. Foss-Feig
    D. Hayes
    K. Mayer
    C. Ryan-Anderson
    B. Neyenhuis
    Nature, 2021, 592 : 209 - 213
  • [49] Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer
    Nguyen, Nhung H.
    Li, Muyuan
    Green, Alaina M.
    Alderete, C. Huerta
    Zhu, Yingyue
    Zhu, Daiwei
    Brown, Kenneth R.
    Linke, Norbert M.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [50] Certified randomness using a trapped-ion quantum processor
    Liu, Minzhao
    Shaydulin, Ruslan
    Niroula, Pradeep
    Decross, Matthew
    Hung, Shih-Han
    Kon, Wen Yu
    Cervero-Martin, Enrique
    Chakraborty, Kaushik
    Amer, Omar
    Aaronson, Scott
    Acharya, Atithi
    Alexeev, Yuri
    Berg, K. Jordan
    Chakrabarti, Shouvanik
    Curchod, Florian J.
    Dreiling, Joan M.
    Erickson, Neal
    Foltz, Cameron
    Foss-Feig, Michael
    Hayes, David
    Humble, Travis S.
    Kumar, Niraj
    Larson, Jeffrey
    Lykov, Danylo
    Mills, Michael
    Moses, Steven A.
    Neyenhuis, Brian
    Eloul, Shaltiel
    Siegfried, Peter
    Walker, James
    Lim, Charles
    Pistoia, Marco
    NATURE, 2025, : 343 - 348