Towards Cycle-based Shuttling for Trapped-Ion Quantum Computers (Extended Abstract)

被引:0
|
作者
Schoenberger, Daniel [1 ]
Hillmich, Stefan [2 ]
Brandl, Matthias [3 ]
Wille, Robert [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Design Automat, Munich, Germany
[2] Software Competence Ctr Hagenberg GmbH, Hagenberg, Austria
[3] Infineon Technol AG, Dresden, Germany
关键词
D O I
10.23919/DATE58400.2024.10546506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Quantum Charge Coupled Device (QCCD) architecture offers a modular solution to enable the realization of trapped-ion quantum computers with a large number of qubits. Within these devices, ions can be shuttled (moved) throughout the trap and through different dedicated zones. However, due to decoherence of the ions' quantum states, the qubits lose their quantum information over time. Thus, the shuttling needed for these shuttling operations should be minimized. In this extended abstract, we propose a concept towards a cycle-based heuristic approach to determining an efficient shuttling schedule for a given quantum circuit.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers
    Luning Zhao
    Joshua Goings
    Kyujin Shin
    Woomin Kyoung
    Johanna I. Fuks
    June-Koo Kevin Rhee
    Young Min Rhee
    Kenneth Wright
    Jason Nguyen
    Jungsang Kim
    Sonika Johri
    npj Quantum Information, 9
  • [32] Trapped-ion antennae for the transmission of quantum information
    Harlander, M.
    Lechner, R.
    Brownnutt, M.
    Blatt, R.
    Haensel, W.
    NATURE, 2011, 471 (7337) : 200 - 203
  • [33] Quantum synchronization of a single trapped-ion qubit
    Zhang, Liyun
    Wang, Zhao
    Wang, Yucheng
    Zhang, Junhua
    Wu, Zhigang
    Jie, Jianwen
    Lu, Yao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [34] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [35] Multispecies Trapped-Ion Node for Quantum Networking
    Inlek, I. V.
    Crocker, C.
    Lichtman, M.
    Sosnova, K.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [36] Trapped-ion quantum logic gates based on oscillating magnetic fields
    Ospelkaus, C.
    Langer, C. E.
    Amini, J. M.
    Brown, K. R.
    Leibfried, D.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [37] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [38] Robust Quantum Memory in a Trapped-Ion Quantum Network Node
    Drmota, P.
    Main, D.
    Nadlinger, D. P.
    Nichol, B. C.
    Weber, M. A.
    Ainley, E. M.
    Agrawal, A.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [39] Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
    Bermudez, A.
    Xu, X.
    Nigmatullin, R.
    O'Gorman, J.
    Negnevitsky, V.
    Schindler, P.
    Monz, T.
    Poschinger, U. G.
    Hempel, C.
    Home, J.
    Schmidt-Kaler, F.
    Biercuk, M.
    Blatt, R.
    Benjamin, S.
    Mueller, M.
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [40] Pulse optimization for high-precision motional-mode characterization in trapped-ion quantum computers
    Liang, Qiyao
    Kang, Mingyu
    Li, Ming
    Nam, Yunseong
    arXiv, 2023,