Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms

被引:0
|
作者
Yan, Kangting [1 ,2 ]
Song, Xiaobing [4 ]
Yang, Jing [1 ,3 ]
Xiao, Junqi [1 ,3 ]
Xu, Xidan [1 ,3 ]
Guo, Jun [1 ,3 ]
Zhu, Hongyun [3 ]
Lan, Yubin [1 ,2 ]
Zhang, Yali [1 ,3 ]
机构
[1] Natl Ctr Int Collaborat Res Precis Agr Aviat Pesti, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Coll Elect Engn, Coll Artificial Intelligence, Guangzhou 510642, Peoples R China
[3] South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
[4] Inst Plant Protect, Guangdong Acad Agr Sci, Guangdong Prov Key Lab High Technol Plant Protect, Guangzhou 510640, Peoples R China
关键词
Hyperspectral technology; Citrus Huanglongbing; Machine learning; Feature band extraction; Rapid detection; REAL-TIME PCR; DISEASE; IDENTIFICATION; DIAGNOSIS; DYNAMICS; SPREAD; YELLOW;
D O I
10.1016/j.cropro.2024.107008
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study explored rapid detection techniques for citrus Huanglongbing (HLB), a disease that severely impacts global citrus production. The method based on hyperspectral technology combined with machine learning algorithms provides new ideas for rapid HLB identification. Algorithm selection is crucial for processing efficiency and hyperspectral data interpretation. Hyperspectral data from healthy, mild HLB-infected, and macular (not related to HLB) citrus leaves were captured using a hyperspectrometer, with qPCR validation. Three preprocessing methods were selected to preprocess the spectral data. Competitive Adaptive Reweighted Sampling (CARS) and Successive Projections Algorithm (SPA) were used to extract feature bands from the hyperspectral data, and the range of the number of filtered feature bands as a percentage of the full band was 22.87%-28.31% and 3.27%-4.17%, respectively. Five distinct algorithms were then employed to construct classification models. Upon evaluation, the SPA-STD-SVM algorithm combination proved most effective, boasting a 97.46% accuracy and a 98.55% recall rate. The results demonstrate that suitable machine learning algorithms can effectively classify the hyperspectral data of citrus leaves in three different states: healthy, mild HLB-infected, and macular. This provides an effective approach for using hyperspectral data to differentiate citrus Huanglongbing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improving Typhoon Predictions by Integrating Data-Driven Machine Learning Model With Physics Model Based on the Spectral Nudging and Data Assimilation
    Niu, Zeyi
    Huang, Wei
    Zhang, Lei
    Deng, Lin
    Wang, Haibo
    Yang, Yuhua
    Wang, Dongliang
    Li, Hong
    EARTH AND SPACE SCIENCE, 2025, 12 (02)
  • [22] DeepAdjoint: An All-in-One Photonic Inverse Design Framework Integrating Data-Driven Machine Learning with Optimization Algorithms
    Yeung, Christopher
    Pham, Benjamin
    Tsai, Ryan
    Fountaine, Katherine T.
    Raman, Aaswath P.
    ACS PHOTONICS, 2023, 10 (04): : 884 - 891
  • [23] Log data-driven model and feature ranking for water saturation prediction using machine learning approach
    Miah, Mohammad Islam
    Zendehboudi, Sohrab
    Ahmed, Salim
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194
  • [24] Enhancing Employee Performance Management A Data-Driven Decision Support Model using Machine Learning Algorithms
    Mourad, Zbakh
    Noura, Aknin
    Mohamed, Chrayah
    Abdelhamid, Bouzidi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 1002 - 1012
  • [25] Failure risk analysis of pipelines using data-driven machine learning algorithms
    Mazumder, Ram K.
    Salman, Abdullahi M.
    Li, Yue
    STRUCTURAL SAFETY, 2021, 89
  • [26] An Exploratory Analysis of Feature Selection for Malware Detection with Simple Machine Learning Algorithms
    Rahman, Md Ashikur
    Islam, Syful
    Nugroho, Yusuf Sulistyo
    Al Irsyadi, Fatah Yasin
    Hossain, Md Javed
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2023, 19 (03) : 207 - 219
  • [27] An Approach to Feature Selection in Intrusion Detection Systems Using Machine Learning Algorithms
    Kavitha, G.
    Elango, N. M.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 48 - 58
  • [28] Machine learning and metaheuristic optimization algorithms for feature selection and botnet attack detection
    Maazalahi, Mahdieh
    Hosseini, Soodeh
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, : 3549 - 3597
  • [29] A Review of Data-Driven Machinery Fault Diagnosis Using Machine Learning Algorithms
    Jian Cen
    Zhuohong Yang
    Xi Liu
    Jianbin Xiong
    Honghua Chen
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2481 - 2507
  • [30] Data-driven insights into the properties of liquisolid systems based on machine learning algorithms
    Vasiljevic, Ivana
    Turkovic, Erna
    Parojcic, Jelena
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 203