Improving Typhoon Predictions by Integrating Data-Driven Machine Learning Model With Physics Model Based on the Spectral Nudging and Data Assimilation

被引:0
|
作者
Niu, Zeyi [1 ,2 ]
Huang, Wei [1 ]
Zhang, Lei [1 ]
Deng, Lin [1 ]
Wang, Haibo [1 ]
Yang, Yuhua [1 ]
Wang, Dongliang [1 ]
Li, Hong [1 ]
机构
[1] China Meteorol Adm, Shanghai Typhoon Inst, Key Lab Numer Modeling Trop Cyclone, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
关键词
Pangu; spectral nudging; ML-driven hybrid typhoon model; WEATHER;
D O I
10.1029/2024EA003952
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The rapid advancement of data-driven machine learning (ML) models has improved typhoon track forecasts, but challenges remain, such as underestimating typhoon intensity and lacking interpretability. This study introduces an ML-driven hybrid typhoon model, where Pangu forecasts constrain the Weather Research and Forecasting (WRF) model using spectral nudging. The results indicate that track forecasts from the WRF simulation nudged by Pangu forecasts significantly outperform those from the WRF simulation using the NCEP GFS initial field and those from the ECMWF IFS for Typhoon Doksuri (2023). Besides, the typhoon intensity forecasts from Pangu-nudging are notably stronger than those from the ECMWF IFS, demonstrating that the hybrid model effectively leverages the strengths of both ML and physical models. Furthermore, this study is the first to explore the significance of data assimilation in ML-driven hybrid typhoon model. The findings reveal that after assimilating water vapor channels from the FY-4B AGRI, the errors in typhoon intensity forecasts are significantly reduced.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Data-Driven Emotion Model for English Learners Based on Machine Learning
    Zheng, Zhao
    Na, Kew Si
    INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2021, 16 (08) : 34 - 46
  • [2] Data Learning: Integrating Data Assimilation and Machine Learning
    Buizza, Caterina
    Casas, Cesar Quilodran
    Nadler, Philip
    Mack, Julian
    Marrone, Stefano
    Titus, Zainab
    Le Cornec, Clemence
    Heylen, Evelyn
    Dur, Tolga
    Ruiz, Luis Baca
    Heaney, Claire
    Lopez, Julio Amador Diaz
    Kumar, K. S. Sesh
    Arcucci, Rossella
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 58
  • [3] Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation
    Pathiraja, S.
    Moradkhani, H.
    Marshall, L.
    Sharma, A.
    Geenens, G.
    WATER RESOURCES RESEARCH, 2018, 54 (02) : 1252 - 1280
  • [4] Data-driven machine learning approach based on physics-informed neural network for population balance model
    Ali, Ishtiaq
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [5] Fracture Permeability Estimation Under Complex Physics: A Data-Driven Model Using Machine Learning
    He, Xupeng
    AlSinan, Marwah M.
    Kwak, Hyung T.
    Hoteit, Hussein
    Saudi Aramco Journal of Technology, 2022, 2022 : 2 - 11
  • [6] An Intelligent Data-Driven Model to Secure Intravehicle Communications Based on Machine Learning
    Al-Saud, Mamdooh
    Eltamaly, Ali M.
    Mohamed, Mohamed A.
    Kavousi-Fard, Abdollah
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (06) : 5112 - 5119
  • [7] DATA-DRIVEN SYMBOL DETECTION VIA MODEL-BASED MACHINE LEARNING
    Farsad, Nariman
    Shlezinger, Nir
    Goldsmith, Andrea J.
    Eldar, Yonina C.
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 571 - 575
  • [8] Data-driven predictive prognostic model for power batteries based on machine learning
    Dong, Jinxi
    Yu, Zhaosheng
    Zhang, Xikui
    Luo, Jiajun
    Zou, Qihong
    Feng, Chao
    Ma, Xiaoqian
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 172 : 894 - 907
  • [9] An intelligent data-driven model for disease diagnosis based on machine learning theory
    He Huang
    Wei Gao
    Chunming Ye
    Journal of Combinatorial Optimization, 2021, 42 : 884 - 895
  • [10] Data-driven symbol detection via model-based machine learning
    Farsad, Nariman
    Shlezinger, Nir
    Goldsmith, Andrea J.
    Eldar, Yonina C.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2020, 20 (03) : 283 - 317