Highly sensitive and efficient 1550 nm photodetector for room temperature operation

被引:0
|
作者
Rituraj [1 ]
Yu, Zhi Gang [2 ]
Kandegedara, R. M. E. B. [3 ]
Fan, Shanhui [4 ]
Krishnamurthy, Srini [2 ,3 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
[2] Sivananthan Labs, Bolingbrook, IL 60440 USA
[3] Univ Illinois, Microphys Lab, Chicago, IL 60607 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
关键词
SEMICONDUCTORS; LAYER;
D O I
10.1063/5.0238863
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photonic quantum technologies such as effective quantum communication require room temperature (RT) operating single- or few-photon sensors with high external quantum efficiency (EQE) at 1550 nm wavelength. The leading class of devices in this segment is avalanche photodetectors operating particularly in the Geiger mode. However, for superior performance, a trade-off has to be made between temperature of operation, device thickness, and EQE. Two-dimensional (2D) materials can be used to reduce the absorber thickness and thus dark current, leading to an increase in the operating temperature, but they suffer from low EQE. We use specifically stacked bilayer hexagonal BAs, with material properties calculated from first principles, on a co-optimized dielectric photonic crystal substrate to simultaneously decrease the dark current by three orders of magnitude at RT and maintain an EQE of >99%. The device can potentially be used in avalanche mode and hence can form a basis for single photon detection. (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).https://doi.org/10.1063/5.0238863
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Germanium on double-SOI photodetectors for 1550 nm operation
    Dosunmu, O
    Emsley, MK
    Cannon, DD
    Ghyselen, B
    Kimerling, LC
    Ünlü, MS
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 853 - 854
  • [32] Germanium on double-SOI photodetectors for 1550 nm operation
    Dosunmu, OI
    Cannon, DD
    Emsley, MK
    Ghyselen, B
    Liu, J
    Kimerling, LC
    SEMICONDUCTOR PHOTODETECTORS, 2004, 5353 : 65 - 71
  • [33] Ferromagnetic CoSe broadband photodetector at room temperature
    Liang, Fang
    Wang, Chaolun
    Luo, Chen
    Xia, Yin
    Wang, Yang
    Xu, Mengjian
    Wang, Hailu
    Wang, Teng
    Zhu, Yicheng
    Wu, Peisong
    Ye, Jiafu
    Mu, Gang
    Zhu, He
    Wu, Xing
    NANOTECHNOLOGY, 2020, 31 (37)
  • [34] Graphene-Based Photodetector at Room Temperature
    Ho, V. X.
    Wang, Y.
    Cooney, M. P.
    Vinh, N. Q.
    OPTICAL SENSING, IMAGING, AND PHOTON COUNTING: FROM X-RAYS TO THZ, 2018, 10729
  • [35] PIN and APD photodetector efficiencies in the longer wavelength range 1300-1550 nm
    Kharraz, Osayd
    Forsyth, David
    OPTIK, 2013, 124 (16): : 2574 - 2576
  • [36] Room and cryogenic temperature operation of 280 nm deep ultraviolet light emitting diodes
    Shatalov, M
    Adivarahan, V
    Zhang, JP
    Chitnis, A
    Wu, SA
    Pachipulusu, R
    Mandavilli, V
    Khan, MA
    GAN AND RELATED ALLOYS-2002, 2003, 743 : 475 - 480
  • [37] 680 NM CW OPERATION AT ROOM-TEMPERATURE BY ALGAAS DOUBLE HETEROJUNCTION LASERS
    YAMAMOTO, S
    HAYASHI, H
    HAYAKAWA, T
    MIYAUCHI, N
    YANO, S
    HIJIKATA, T
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1983, 19 (06) : 1009 - 1015
  • [38] Silicon four-quadrant photodetector working at the 1550-nm telecommunication wavelength
    Wang, Zhao
    Zhang, Ziyu
    Zou, Kai
    Meng, Yun
    Hu, Xiaolong
    OPTICS LETTERS, 2022, 47 (16) : 4048 - 4051
  • [39] Back-illuminated silicon resonant cavity-enhanced photodetector at 1550 nm
    Casalino, M.
    Sirleto, L.
    Moretti, L.
    Gioffre, M.
    Coppola, G.
    Iodice, M.
    Rendina, I.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (06): : 1097 - 1101
  • [40] High Speed 1550 nm Indium Gallium Arsenide-Indium Phosphide Photodetector
    Perez E.
    Lacomb R.
    Jain F.
    International Journal of High Speed Electronics and Systems, 2023, 32 (2-4)