Poisson spacing statistics for lattice points on circles

被引:0
|
作者
Kurlberg, Par [1 ]
Lester, Stephen [2 ]
机构
[1] KTH, Dept Math, SE-10044 Stockholm, Sweden
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
瑞典研究理事会; 英国工程与自然科学研究理事会;
关键词
RANDOM-MATRIX THEORY; RIEMANN ZEROS; ZETA; SUMS;
D O I
10.1007/s00222-025-01324-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that along a density one subsequence of admissible radii, the nearest neighbor spacing between lattice points on circles is Poissonian.
引用
收藏
页码:537 / 585
页数:49
相关论文
共 50 条
  • [41] Representing circles with five control points
    Carnicer, JM
    Mainar, E
    Peña, JM
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (8-9) : 501 - 511
  • [42] On circles containing the maximum number of points
    Akiyama, J.
    Ishigami, Y.
    Urabe, M.
    Urrutia, J.
    1996, Elsevier (151) : 1 - 3
  • [43] Distance between Separating Circles and Points
    Veelaert, Peter
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 : 346 - 357
  • [44] NORMAL FREQUENCY SPACING STATISTICS
    BOLT, RH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1947, 19 (01): : 79 - 90
  • [45] OPTIMAL SPACING OF POINTS ON A CIRCLE
    VANRAVENSTEIN, T
    FIBONACCI QUARTERLY, 1989, 27 (01): : 18 - 24
  • [46] CIRCLES THROUGH 2 POINTS THAT ALWAYS ENCLOSE MANY POINTS
    EDELSBRUNNER, H
    HASAN, N
    SEIDEL, R
    SHEN, XJ
    GEOMETRIAE DEDICATA, 1989, 32 (01) : 1 - 12
  • [47] DEVICE FOR CARVING OUT OF SPACING NETS AS SERIES OF CIRCLES
    GOLDSHMI.MG
    PANTSILI.VD
    ZAVODSKAYA LABORATORIYA, 1972, (01): : 117 - +
  • [48] Order Statistics in the Farey Sequences in Sublinear Time and Counting Primitive Lattice Points in Polygons
    Pawlewicz, Jakub
    Patrascu, Mihai
    ALGORITHMICA, 2009, 55 (02) : 271 - 282
  • [49] Order Statistics in the Farey Sequences in Sublinear Time and Counting Primitive Lattice Points in Polygons
    Jakub Pawlewicz
    Mihai Pătraşcu
    Algorithmica, 2009, 55 : 271 - 282
  • [50] Lattice points in lattice polytopes
    Pikhurko, O
    MATHEMATIKA, 2001, 48 (95-96) : 15 - 24