Local Well-Posedness to the Magneto-Micropolar Boundary Layer Equations in Gevrey Space

被引:0
|
作者
Tan, Zhong [1 ]
Zhang, Mingxue [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
energy method; Gevrey class; magneto-micropolar boundary layer; well-posedness theory; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; HALF-SPACE; PRANDTL;
D O I
10.1002/mma.10637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundary layer equations for two-dimensional magneto-micropolar boundary layer system and establish the existence and uniqueness of solutions in the Gevrey function space without any structural assumption, with Gevrey index sigma is an element of(1,32]$$ \sigma \in \left(1,\frac{3}{2}\right] $$. Inspired by the abstract Cauchy-Kovalevskaya theorem, our proof is based on a new cancellation mechanism in the system to overcome the difficulties caused by the loss of derivatives. Our results improve the classical local well-posedness results presented in a previous study, specifically for cases where the initial data are analytic in the x$$ x $$-variable.
引用
收藏
页码:5790 / 5802
页数:13
相关论文
共 50 条
  • [41] Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting
    Ya Jun Li
    Wen Dong Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 1402 - 1418
  • [42] Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space
    Dong, Xiaolei
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (12): : 6618 - 6640
  • [43] Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting
    Li, Ya Jun
    Wang, Wen Dong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) : 1402 - 1418
  • [44] Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting
    Ya Jun LI
    Wen Dong WANG
    Acta Mathematica Sinica,English Series, 2019, (08) : 1402 - 1418
  • [45] Local Well-posedness for Linearized Degenerate MHD Boundary Layer Equations in Analytic Setting
    Ya Jun LI
    Wen Dong WANG
    ActaMathematicaSinica, 2019, 35 (08) : 1402 - 1418
  • [46] Some Remarks on Gevrey Well-Posedness for Degenerate Schrodinger Equations
    Cicognani, Massimo
    Reissig, Michael
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 1: PDE, DIFFERENTIAL GEOMETRY, RADON TRANSFORM, 2015, 653 : 81 - 91
  • [47] GEVREY WELL-POSEDNESS FOR A CLASS OF WEAKLY HYPERBOLIC-EQUATIONS
    JANNELLI, E
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1984, 24 (04): : 763 - 778
  • [48] Local well-posedness of solutions to the boundary layer equations for 2D compressible flow
    Fan, Long
    Ruan, Lizhi
    Yang, Anita
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
  • [49] LOCAL WELL-POSEDNESS OF SOLUTIONS TO THE BOUNDARY LAYER EQUATIONS FOR COMPRESSIBLE TWO-FLUID FLOW
    Fan, Long
    Liu, Cheng-Jie
    Ruan, Lizhi
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4009 - 4050
  • [50] On the Gevrey well-posedness of the Kirchhoff equation
    Tokio Matsuyama
    Michael Ruzhansky
    Journal d'Analyse Mathématique, 2019, 137 : 449 - 468