LOCAL WELL-POSEDNESS OF SOLUTIONS TO THE BOUNDARY LAYER EQUATIONS FOR COMPRESSIBLE TWO-FLUID FLOW

被引:0
|
作者
Fan, Long [1 ,2 ]
Liu, Cheng-Jie [3 ,4 ]
Ruan, Lizhi [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Phys, Wuhan 430079, Peoples R China
[2] Shanxi Datong Univ, Sch Math & Stat, Datong 037009, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Inst Nat Sci, Ctr Appl Math,MOE,LSC, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, SHL, MAC, Shanghai 200240, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Two-fluid boundary layer system; local well-posedness; weighted energy method; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; ILL-POSEDNESS; GLOBAL EXISTENCE; ANALYTIC SOLUTIONS; HALF-SPACE; STABILITY; EULER;
D O I
10.3934/era.2021070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the two-dimensional (2D) two-fluid boundary layer system, which is a hyperbolic-degenerate parabolic-elliptic coupling system derived from the compressible isentropic two-fluid flow equations with nonslip boundary condition for the velocity. The local existence and uniqueness is established in weighted Sobolev spaces under the monotonicity assumption on tangential velocity along normal direction based on a nonlinear energy method by employing a nonlinear cancelation technic introduced in [R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, J. Amer. Math. Soc., 28 (2015), 745-784; N. Masmoudi and T.K. Wong, Comm. Pure Appl. Math., 68(2015), 1683-1741] and developed in [C.-J. Liu, F. Xie and T. Yang, Comm. Pure Appl. Math., 72(2019), 63-121].
引用
收藏
页码:4009 / 4050
页数:42
相关论文
共 50 条
  • [1] Local well-posedness of solutions to the boundary layer equations for 2D compressible flow
    Fan, Long
    Ruan, Lizhi
    Yang, Anita
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
  • [2] Well-posedness for two-fluid two-phase flow equations
    Yabushita, Yukihisa
    Tanamachi, Yoshihiro
    Shimoda, Yoshinori
    Shimegi, Nobuo
    Nippon Genshiryoku Gakkaishi/Journal of the Atomic Energy Society of Japan, 1995, 37 (03):
  • [3] The global well-posedness of solutions to compressible isentropic two-fluid magnetohydrodynamics in a strip domain
    Feng, Zefu
    Jia, Jing
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1997 - 2018
  • [4] THE GLOBAL WELL-POSEDNESS OF SOLUTIONS TO COMPRESSIBLE ISENTROPIC TWO-FLUID MAGNETOHYDRODYNAMICS IN A STRIP DOMAIN
    冯泽夫
    贾净
    Acta Mathematica Scientia, 2024, 44 (05) : 1997 - 2018
  • [5] LOCAL WELL-POSEDNESS OF PRANDTL EQUATIONS FOR COMPRESSIBLE FLOW IN TWO SPACE VARIABLES
    Wang, Ya-Guang
    Xie, Feng
    Yang, Tong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 321 - 346
  • [6] Local-in-time well-posedness for compressible MHD boundary layer
    Huang, Yongting
    Liu, Cheng-Jie
    Yang, Tong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (06) : 2978 - 3013
  • [7] Well-posedness of the boundary layer equations
    Lombardo, MC
    Cannone, M
    Sammartino, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) : 987 - 1004
  • [8] The local well-posedness of analytic solution to the boundary layer system for compressible flow in three dimensions
    Chen, Yufeng
    Ruan, Lizhi
    Yang, Anita
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 716 - 746
  • [9] Global well-posedness and large time behavior of classical solutions to a generic compressible two-fluid model
    Wu, Guochun
    Yao, Lei
    Zhang, Yinghui
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3379 - 3415
  • [10] Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model
    Evje, Steinar
    Wang, Wenjun
    Wen, Huanyao
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) : 1285 - 1316