LOCAL WELL-POSEDNESS OF SOLUTIONS TO THE BOUNDARY LAYER EQUATIONS FOR COMPRESSIBLE TWO-FLUID FLOW

被引:0
|
作者
Fan, Long [1 ,2 ]
Liu, Cheng-Jie [3 ,4 ]
Ruan, Lizhi [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Phys, Wuhan 430079, Peoples R China
[2] Shanxi Datong Univ, Sch Math & Stat, Datong 037009, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Inst Nat Sci, Ctr Appl Math,MOE,LSC, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, SHL, MAC, Shanghai 200240, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Two-fluid boundary layer system; local well-posedness; weighted energy method; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; ILL-POSEDNESS; GLOBAL EXISTENCE; ANALYTIC SOLUTIONS; HALF-SPACE; STABILITY; EULER;
D O I
10.3934/era.2021070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the two-dimensional (2D) two-fluid boundary layer system, which is a hyperbolic-degenerate parabolic-elliptic coupling system derived from the compressible isentropic two-fluid flow equations with nonslip boundary condition for the velocity. The local existence and uniqueness is established in weighted Sobolev spaces under the monotonicity assumption on tangential velocity along normal direction based on a nonlinear energy method by employing a nonlinear cancelation technic introduced in [R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, J. Amer. Math. Soc., 28 (2015), 745-784; N. Masmoudi and T.K. Wong, Comm. Pure Appl. Math., 68(2015), 1683-1741] and developed in [C.-J. Liu, F. Xie and T. Yang, Comm. Pure Appl. Math., 72(2019), 63-121].
引用
收藏
页码:4009 / 4050
页数:42
相关论文
共 50 条