RM4ML: requirements model for machine learning-enabled software systems

被引:0
|
作者
Yang, Yilong [1 ]
Zeng, Bingjie [2 ]
Gao, Juntao [2 ]
机构
[1] Beihang Univ, Sch Software, State Key Lab Complex & Crit Software Environm, Beijing 100080, Peoples R China
[2] Northeast Petr Univ, Sch Software, Daqing 163318, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Requirements model; UML; Requirements engineering; Meta-model;
D O I
10.1007/s00766-024-00431-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning (ML)-enabled is one of the appealing characteristics of modern software systems, which usually contain ML components to make the system more intelligent for easier living. Requirements for ML-enabled software systems involve functional, quality, environmental, and data requirements. UML is a de facto approach for requirements analysis and system design, but its current modeling capabilities do not yet cover ML-enabled software systems to describe software quality requirements, environmental requirements, and data requirements. In this paper, we propose a requirements model for ML-enabled software systems and a modeling process for this model based on an extension of UML. In addition, we demonstrate the proposed model and modeling process through the case of the Tesla Autopilot system. The results show that the proposed model is expressive and usable and has a low learning curve when the software developers have basic knowledge of UML. Our proposed model can be further implemented and used in industrial settings.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [41] Machine learning-enabled autonomous operation for atomic force microscopes
    Kang, Seongseok
    Park, Junhong
    Lee, Manhee
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [42] Machine Learning-enabled Scalable Performance Prediction of Scientific Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Romero, Phill
    Eidenbenz, Stephan
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (02):
  • [43] Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes
    Liu, Yonglan
    Zhang, Dong
    Tang, Yijing
    Zhang, Yanxian
    Gong, Xiong
    Xie, Shaowen
    Zheng, Jie
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [44] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [45] Weld quality monitoring via machine learning-enabled approaches
    Raj, Aditya
    Chadha, Utkarsh
    Chadha, Arisha
    Mahadevan, R. Rishikesh
    Sai, Buddhi Rohan
    Chaudhary, Devanshi
    Selvaraj, Senthil Kumaran
    Lokeshkumar, R.
    Das, Sreethul
    Karthikeyan, B.
    Nagalakshmi, R.
    Chandramohan, Vishjit
    Hadidi, Haitham
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023,
  • [46] Machine Learning-Enabled Development of Accurate Force Fields for Refrigerants
    Wang, Ning
    Carlozo, Montana N. N.
    Marin-Rimoldi, Eliseo
    Befort, Bridgette J. J.
    Dowling, Alexander W. W.
    Maginn, Edward J. J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4546 - 4558
  • [47] Overview of Machine Learning-Enabled Battery State Estimation Methods
    Zhuge, Yingjian
    Yang, Hengzhao
    Wang, Haoyu
    2023 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2023, : 3028 - 3035
  • [48] Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer
    Moztarzadeh, Omid
    Jamshidi, Mohammad
    Sargolzaei, Saleh
    Jamshidi, Alireza
    Baghalipour, Nasimeh
    Malekzadeh Moghani, Mona
    Hauer, Lukas
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [49] Hybrid machine learning-enabled adaptive welding speed control
    Kershaw, Joseph
    Yu, Rui
    Zhang, Yuming
    Wang, Peng
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 71 : 374 - 383
  • [50] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84