The Chromatic Number of (P5, HVN)-free Graphs

被引:0
|
作者
Xu, Yian [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
<italic>P</italic>5; HVN; chromatic number; clique number; BOUNDS;
D O I
10.1007/s10255-024-1029-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. We use chi(G) and omega(G) to denote the chromatic number and clique number of G respectively. A P5 is a path on 5 vertices, and an HVN is a K4 together with one more vertex which is adjacent to exactly two vertices of K4. Combining with some known result, in this paper we show that if G is (P5, HVN)-free, then chi(G) <= max{min{16, omega(G) + 3}, omega(G) + 1}. This upper bound is almost sharp.
引用
收藏
页码:1098 / 1110
页数:13
相关论文
共 50 条
  • [41] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [42] STABILITY NUMBER IN SUBCLASSES OF P5-FREE GRAPHS
    Zverovich I E
    Zverovich O I
    Applied Mathematics:A Journal of Chinese Universities, 2004, (02) : 125 - 132
  • [43] Stability number in subclasses of P5-free graphs
    Zverovich I.E.
    Zverovich O.I.
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (2) : 125 - 132
  • [44] Infinite Families of k-Vertex-Critical (P5,C5)-Free Graphs
    Cameron, Ben
    Hoang, Chinh
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [45] Coloring (P5,gem) $({P}_{5},\text{gem})$-free graphs with Δ -1 ${\rm{\Delta }}-1$ colors
    Cranston, Daniel W.
    Lafayette, Hudson
    Rabern, Landon
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 633 - 642
  • [46] On minimal imperfect graphs without induced P5
    Barré, V
    Fouquet, JL
    DISCRETE APPLIED MATHEMATICS, 1999, 94 (1-3) : 9 - 33
  • [47] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2017, 37 : 481 - 494
  • [48] Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time
    Broersma, Hajo
    Golovach, Petr A.
    Paulusma, Daniel
    Song, Jian
    THEORETICAL COMPUTER SCIENCE, 2012, 423 : 1 - 10
  • [49] On the chromatic number of 2K2-free graphs
    Brause, Christoph
    Randerath, Bert
    Schiermeyer, Ingo
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2019, 253 : 14 - 24
  • [50] The fractional chromatic number of triangle-free subcubic graphs
    Ferguson, David G.
    Kaiser, Tomas
    Kral, Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 184 - 220