The Chromatic Number of (P5, HVN)-free Graphs

被引:0
|
作者
Xu, Yian [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
<italic>P</italic>5; HVN; chromatic number; clique number; BOUNDS;
D O I
10.1007/s10255-024-1029-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. We use chi(G) and omega(G) to denote the chromatic number and clique number of G respectively. A P5 is a path on 5 vertices, and an HVN is a K4 together with one more vertex which is adjacent to exactly two vertices of K4. Combining with some known result, in this paper we show that if G is (P5, HVN)-free, then chi(G) <= max{min{16, omega(G) + 3}, omega(G) + 1}. This upper bound is almost sharp.
引用
收藏
页码:1098 / 1110
页数:13
相关论文
共 50 条
  • [21] On color-critical (P5,co-P5)-free graphs
    Dhaliwal, Harjinder S.
    Hamel, Angele M.
    Hoang, Chinh T.
    Maffray, Frederic
    McConnell, Tyler J. D.
    Panait, Stefan A.
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 142 - 148
  • [22] On colouring (2P2, H)-free and (P5, H)-free graphs
    Dabrowski, Konrad K.
    Paulusma, Daniel
    INFORMATION PROCESSING LETTERS, 2018, 134 : 35 - 41
  • [23] Coloring (P5,gem-free graphs with Δ−1 colors
    Cranston, Daniel W.
    Lafayette, Hudson
    Rabern, Landon
    Journal of Graph Theory, 2022, 101 (04): : 633 - 642
  • [24] Stable set and clique polytopes of (P5,gem)-free graphs
    De Simone, Caterina
    Mosca, Raffaele
    DISCRETE MATHEMATICS, 2007, 307 (22) : 2661 - 2670
  • [25] On the Chromatic Number of Some (P3 ∨ P2)-Free Graphs
    Li, Rui
    Li, Jinfeng
    Wu, Di
    MATHEMATICS, 2023, 11 (19)
  • [26] On the chromatic number ofP5-free graphs with no large intersecting cliques
    Xu, Weilun
    Zhang, Xia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 46 (03)
  • [27] CHROMATIC NUMBER K(P,G) OF GRAPHS
    KRAMER, F
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1972, (NR-1): : 67 - &
  • [28] The rainbow Turan number of P5
    Halfpap, Anastasia
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 87 : 403 - 422
  • [29] A refinement on the structure of vertex-critical (P5, gem)-free graphs
    Cameron, Ben
    Hoang, Chinh T.
    THEORETICAL COMPUTER SCIENCE, 2023, 961
  • [30] Connected Vertex Cover for (sP1 + P5)-Free Graphs
    Johnson, Matthew
    Paesani, Giacomo
    Paulusma, Daniel
    ALGORITHMICA, 2020, 82 (01) : 20 - 40