On finite pseudorandom binary sequences: functions from a Hardy field

被引:0
|
作者
M. G. Madritsch [1 ]
J. Rivat [2 ]
R. F. Tichy [3 ]
机构
[1] CNRS,Université de Lorraine
[2] IECL,Université d’Aix
[3] Institut de Mathématiques de Marseille,Marseille, Institut Universitaire de France
[4] CNRS UMR 7373,Institute of Analysis and Number Theory
[5] Graz University of Technology,undefined
关键词
pseudorandom; binary sequence; Hardy field; well-distribution; correlation; primary 11K45; secondary 11K06; 11K36; 11J71;
D O I
10.1007/s10474-024-01469-0
中图分类号
学科分类号
摘要
We provide a construction of binary pseudorandom sequences based on Hardy fields H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} as considered by Boshernitzan. In particular we give upper bounds for the well distribution measure and the correlation measure defined by Mauduit and Sárközy. Finally we show that the correlation measure of order s is small only if s is small compared to the “growth exponent” of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}.
引用
收藏
页码:121 / 137
页数:16
相关论文
共 50 条
  • [1] On finite pseudorandom binary sequences, VI, (On (nkα) sequences)
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (04): : 281 - 298
  • [2] On finite pseudorandom binary sequences VII:: The measures of pseudorandomness
    Cassaigne, J
    Mauduit, C
    Sárközy, A
    ACTA ARITHMETICA, 2002, 103 (02) : 97 - 118
  • [3] On pseudorandom binary sequences constructed by using finite fields
    Richárd Sebők
    Periodica Mathematica Hungarica, 2015, 71 : 210 - 223
  • [4] On pseudorandom binary sequences constructed by using finite fields
    Sebok, Richard
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (02) : 210 - 223
  • [5] On finite pseudorandom binary sequences III:: The Liouville function, I
    Cassaigne, J
    Ferenczi, S
    Mauduit, C
    Rivat, J
    Sárközy, A
    ACTA ARITHMETICA, 1999, 87 (04) : 367 - 390
  • [6] On finite pseudorandom binary sequences IV:: The Liouville function, II
    Cassaigne, J
    Ferenczi, S
    Mauduit, C
    Rivat, J
    Sárközy, A
    ACTA ARITHMETICA, 2000, 95 (04) : 343 - 359
  • [7] On finite pseudorandom binary sequences, V.: On (nα) and (n2α) sequences
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 129 (03): : 197 - 216
  • [8] On Finite Pseudorandom Binary Sequences, V.On (nα) and (n2α) Sequences
    Christian Mauduit
    András Sárközy
    Monatshefte für Mathematik, 2000, 129 : 197 - 216
  • [9] Pseudorandom sequences of binary vectors
    Niederreiter, Harald
    Rivat, Joel
    Sarkozy, Andras
    ACTA ARITHMETICA, 2008, 133 (02) : 109 - 125
  • [10] Concatenation of pseudorandom binary sequences
    Gyarmati, Katalin
    PERIODICA MATHEMATICA HUNGARICA, 2009, 58 (01) : 99 - 120