On Finite Pseudorandom Binary Sequences, V.On (nα) and (n2α) Sequences

被引:0
|
作者
Christian Mauduit
András Sárközy
机构
[1]  Institut de Mathématiques de Luminy,
[2] Marseille,undefined
[3] France,undefined
[4]  Eötvös Lóránd University,undefined
[5] Budapest,undefined
[6] Hungary,undefined
来源
关键词
1991 Mathematics Subject Classification: 11K45; Key words: Pseudorandom, correlation, uniform distribution, diophantine approximation;
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a positive integer and α be a real number, and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} if the fractional part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is <1/2 and en=−1 if it is ≥1/2. The pseudorandom properties of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied. As measures of pseudorandomness, the regularity of the distribution relative to arithmetic progressions and the correlation are used. Here the special cases k=1 and k=2 are studied (while the case k>2 will be studied in the sequel).
引用
收藏
页码:197 / 216
页数:19
相关论文
共 50 条
  • [1] On finite pseudorandom binary sequences, V.: On (nα) and (n2α) sequences
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 129 (03): : 197 - 216
  • [2] On finite pseudorandom binary sequences, VI, (On (nkα) sequences)
    Mauduit, C
    Sárközy, A
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (04): : 281 - 298
  • [3] Binary pseudorandom sequences of period 2n-1 with ideal autocorrelation
    No, JS
    Golomb, SW
    Gong, G
    Lee, HK
    Gaal, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 814 - 817
  • [4] Binary sequences generated by sequences {nα}, n=1,2, ...
    Porubsky, Stefan
    Strauch, Oto
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (1-2): : 139 - 170
  • [5] On finite pseudorandom binary sequences VII:: The measures of pseudorandomness
    Cassaigne, J
    Mauduit, C
    Sárközy, A
    ACTA ARITHMETICA, 2002, 103 (02) : 97 - 118
  • [6] On pseudorandom binary sequences constructed by using finite fields
    Richárd Sebők
    Periodica Mathematica Hungarica, 2015, 71 : 210 - 223
  • [7] On pseudorandom binary sequences constructed by using finite fields
    Sebok, Richard
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (02) : 210 - 223
  • [8] Pseudorandom sequences of binary vectors
    Niederreiter, Harald
    Rivat, Joel
    Sarkozy, Andras
    ACTA ARITHMETICA, 2008, 133 (02) : 109 - 125
  • [9] Concatenation of pseudorandom binary sequences
    Gyarmati, Katalin
    PERIODICA MATHEMATICA HUNGARICA, 2009, 58 (01) : 99 - 120
  • [10] On a Pseudorandom Property of Binary Sequences
    Katalin Gyarmati
    The Ramanujan Journal, 2004, 8 : 289 - 302