On Finite Pseudorandom Binary Sequences, V.On (nα) and (n2α) Sequences

被引:0
|
作者
Christian Mauduit
András Sárközy
机构
[1]  Institut de Mathématiques de Luminy,
[2] Marseille,undefined
[3] France,undefined
[4]  Eötvös Lóránd University,undefined
[5] Budapest,undefined
[6] Hungary,undefined
来源
关键词
1991 Mathematics Subject Classification: 11K45; Key words: Pseudorandom, correlation, uniform distribution, diophantine approximation;
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a positive integer and α be a real number, and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} if the fractional part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is <1/2 and en=−1 if it is ≥1/2. The pseudorandom properties of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied. As measures of pseudorandomness, the regularity of the distribution relative to arithmetic progressions and the correlation are used. Here the special cases k=1 and k=2 are studied (while the case k>2 will be studied in the sequel).
引用
收藏
页码:197 / 216
页数:19
相关论文
共 50 条
  • [41] Construction of large families of pseudorandom binary sequences
    László Mérai
    The Ramanujan Journal, 2009, 18 : 341 - 349
  • [42] Construction of large families of pseudorandom binary sequences
    Merai, Laszlo
    RAMANUJAN JOURNAL, 2009, 18 (03): : 341 - 349
  • [43] A family of elliptic curve pseudorandom binary sequences
    Huaning Liu
    Designs, Codes and Cryptography, 2014, 73 : 251 - 265
  • [44] On the binary digits of n and n2
    Aloui, Karam
    Jamet, Damien
    Kaneko, Hajime
    Kopecki, Steffen
    Popoli, Pierre
    Stoll, Thomas
    THEORETICAL COMPUTER SCIENCE, 2023, 939 : 119 - 139
  • [45] On the PMEPR of Binary Golay Sequences of Length 2n
    Wang, Zilong
    Parker, Matthew G.
    Gong, Guang
    Wu, Gaofei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (04) : 2391 - 2398
  • [46] On the Cryptographic Properties of Binary 2n-periodic Sequences
    Chang Zuling
    Wen Qiaoyan
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (02): : 307 - 311
  • [47] The cube theory for 2n-periodic binary sequences
    Zhou, Jianqin
    Liu, Wanquan
    Wang, Xifeng
    2015 9TH INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION AND NETWORKING (FGCN), 2015, : 1 - 4
  • [48] A Study on Binary Sequences Located n Hadamard Matrices of Order 2n
    Nakano, Kasumi
    Takahashi, Kako
    Uehara, Satoshi
    Miyazaki, Takeru
    Araki, Shunsuke
    Nogami, Yasuyuki
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 460 - 464
  • [50] On the correlation of pseudorandom binary sequences using additive characters
    Liu, Huaning
    Wang, Xiaoyun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2): : 145 - 170