On finite pseudorandom binary sequences: functions from a Hardy field

被引:0
|
作者
M. G. Madritsch [1 ]
J. Rivat [2 ]
R. F. Tichy [3 ]
机构
[1] CNRS,Université de Lorraine
[2] IECL,Université d’Aix
[3] Institut de Mathématiques de Marseille,Marseille, Institut Universitaire de France
[4] CNRS UMR 7373,Institute of Analysis and Number Theory
[5] Graz University of Technology,undefined
关键词
pseudorandom; binary sequence; Hardy field; well-distribution; correlation; primary 11K45; secondary 11K06; 11K36; 11J71;
D O I
10.1007/s10474-024-01469-0
中图分类号
学科分类号
摘要
We provide a construction of binary pseudorandom sequences based on Hardy fields H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} as considered by Boshernitzan. In particular we give upper bounds for the well distribution measure and the correlation measure defined by Mauduit and Sárközy. Finally we show that the correlation measure of order s is small only if s is small compared to the “growth exponent” of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}.
引用
收藏
页码:121 / 137
页数:16
相关论文
共 50 条
  • [31] On finite pseudorandom sequences of k symbols
    Bérczi Gergely
    Periodica Mathematica Hungarica, 2003, 47 (1-2) : 29 - 44
  • [32] Finite and infinite pseudorandom binary words
    Mauduit, C
    THEORETICAL COMPUTER SCIENCE, 2002, 273 (1-2) : 249 - 261
  • [33] Construction of large families of pseudorandom binary sequences
    Goubin, L
    Mauduit, C
    Sárközy, A
    JOURNAL OF NUMBER THEORY, 2004, 106 (01) : 56 - 69
  • [34] Randomness quality of permuted pseudorandom binary sequences
    Tan, Syn Kiat
    Guan, Sheng-Uei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (05) : 1618 - 1626
  • [35] A family of elliptic curve pseudorandom binary sequences
    Liu, Huaning
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 251 - 265
  • [36] PARAMETER ESTIMATION USING PSEUDORANDOM BINARY SEQUENCES
    MACLEOD, CJ
    ELECTRONICS LETTERS, 1969, 5 (02) : 35 - &
  • [37] On pseudorandom [0,1) and binary sequences
    Mauduit, Christian
    Niederreiter, Harald
    Sarkozy, Andras
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 305 - 324
  • [38] On the correlation of pseudorandom binary sequences with composite moduli
    Liu, Huaning
    Zhan, Tao
    Wang, Xiaoyun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 195 - 214
  • [39] Construction of large families of pseudorandom binary sequences
    László Mérai
    The Ramanujan Journal, 2009, 18 : 341 - 349
  • [40] Trace representation of pseudorandom binary sequences derived from Euler quotients
    Chen, Zhixiong
    Du, Xiaoni
    Marzouk, Radwa
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (06) : 555 - 570