Existence of an optimal shape for the first eigenvalue of polyharmonic operators

被引:0
|
作者
Leylekian, Romeo [1 ]
机构
[1] Aix Marseille Univ, CNRS, I2M, Marseille, France
关键词
OPTIMIZATION PROBLEMS; RAYLEIGHS CONJECTURE; REGULARITY; CALCULUS; PLATE;
D O I
10.1007/s00526-025-02936-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an open set minimizing the first eigenvalue of the Dirichlet polylaplacian of order m >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} under volume constraint. Moreover, the corresponding eigenfunction is shown to enjoy Cm-1,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{m-1,\alpha }$$\end{document} H & ouml;lder regularity. This is performed for dimension 2 <= d <= 4m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le d\le 4m$$\end{document}. In particular, our analysis answers the question of the existence of an optimal shape for the clamped plate up to dimension 8.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] SPECTRAL ASYMPTOTICS OF DEGENERATING POLYHARMONIC OPERATORS
    VULIS, IL
    DOKLADY AKADEMII NAUK SSSR, 1974, 219 (05): : 1049 - 1052
  • [42] The Generalized Davies Problem for Polyharmonic Operators
    F. G. Avkhadiev
    Siberian Mathematical Journal, 2017, 58 : 932 - 942
  • [43] Toeplitz operators on the polyharmonic Bergman space
    Zhang, Bo
    Yang, Yixin
    Lu, Yufeng
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (02)
  • [44] UNIVERSAL BOUNDS FOR EIGENVALUES OF THE POLYHARMONIC OPERATORS
    Jost, Juergen
    Li-Jost, Xianqing
    Wang, Qiaoling
    Xia, Changyu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) : 1821 - 1854
  • [45] EIGENVALUES OF POLYHARMONIC OPERATORS ON VARIABLE DOMAINS
    Buoso, Davide
    Lamberti, Pier Domenico
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (04) : 1225 - 1235
  • [46] Optimal Shape Design for the p-Laplacian Eigenvalue Problem
    Seyyed Abbas Mohammadi
    Farid Bozorgnia
    Heinrich Voss
    Journal of Scientific Computing, 2019, 78 : 1231 - 1249
  • [47] Optimal Shape Design for the p-Laplacian Eigenvalue Problem
    Mohammadi, Seyyed Abbas
    Bozorgnia, Farid
    Voss, Heinrich
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1231 - 1249
  • [48] ON THE OPTIMAL ASYMPTOTIC EIGENVALUE BEHAVIOR OF WEAKLY SINGULAR INTEGRAL-OPERATORS
    COBOS, F
    JANSON, S
    KUHN, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (04) : 1017 - 1022
  • [49] Optimal lower estimates for eigenvalue ratios of Schrodinger operators and vibrating strings
    Chen, CC
    Law, CK
    Sing, FY
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (02): : 175 - 185
  • [50] Simplicial cones and the existence of shape-preserving cyclic operators
    Chalmers, BL
    Prophet, MP
    Ribando, JM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 (375) : 157 - 170