Existence of an optimal shape for the first eigenvalue of polyharmonic operators

被引:0
|
作者
Leylekian, Romeo [1 ]
机构
[1] Aix Marseille Univ, CNRS, I2M, Marseille, France
关键词
OPTIMIZATION PROBLEMS; RAYLEIGHS CONJECTURE; REGULARITY; CALCULUS; PLATE;
D O I
10.1007/s00526-025-02936-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an open set minimizing the first eigenvalue of the Dirichlet polylaplacian of order m >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} under volume constraint. Moreover, the corresponding eigenfunction is shown to enjoy Cm-1,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{m-1,\alpha }$$\end{document} H & ouml;lder regularity. This is performed for dimension 2 <= d <= 4m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le d\le 4m$$\end{document}. In particular, our analysis answers the question of the existence of an optimal shape for the clamped plate up to dimension 8.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs
    Hua, Bobo
    Huang, Yan
    Wang, Zuoqin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [32] Existence and uniqueness results for polyharmonic equations
    Dalmasso, Robert
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (01): : 131 - 137
  • [33] FIRST EIGENVALUE AND MAXIMUM PRINCIPLE FOR FULLY NONLINEAR SINGULAR OPERATORS
    Birindelli, Isabeau
    Demengel, Francoise
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (01) : 91 - 119
  • [34] First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs
    Bobo Hua
    Yan Huang
    Zuoqin Wang
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [35] The first eigenvalue of one-dimensional elliptic operators with killing
    Dai, Kang
    Sun, Xiaobin
    Wang, Jian
    Xie, Yingchao
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) : 282 - 311
  • [36] Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators
    Della Pietra, Francesco
    Piscitelli, Gianpaolo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 : 269 - 293
  • [37] Extremal properties of the first eigenvalue of Schrodinger-type operators
    Notarantonio, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) : 333 - 346
  • [38] The Generalized Davies Problem for Polyharmonic Operators
    Avkhadiev, F. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (06) : 932 - 942
  • [39] Existence and regularity of optimal shapes for elliptic operators with drift
    Russ, Emmanuel
    Trey, Baptiste
    Velichkov, Bozhidar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [40] Existence and regularity of optimal shapes for elliptic operators with drift
    Emmanuel Russ
    Baptiste Trey
    Bozhidar Velichkov
    Calculus of Variations and Partial Differential Equations, 2019, 58