Local uniqueness of minimizers for Choquard type equations

被引:0
|
作者
Liu, Lintao [1 ]
Teng, Kaimin [2 ]
Yuan, Shuai [3 ]
机构
[1] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[3] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050016, Hebei, Peoples R China
关键词
Choquard type equations; Local uniqueness; Pohozaev identity; NORMALIZED SOLUTIONS; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; MULTIPLICITY; BEHAVIOR;
D O I
10.1016/j.na.2025.113764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider L-2-constraint minimizers of the Choquard energy functional with a trapping potential V(x) = |x|(2). It is known that positive minimizers exist if and only if the parameter a satisfies a < a* := ||Q||(2)(2), where Q is the unique positive radial solution of -Delta u + u - |u|(4/3) u = 0 in R-3. This paper focuses on the local uniqueness of minimizers by using energy estimates, blow-up analysis and establishing the Pohozaev identity.
引用
收藏
页数:20
相关论文
共 50 条