Metric dimension of star fan graph

被引:0
|
作者
Prabhu, S. [1 ]
Jeba, D. Sagaya Rani [2 ]
Stephen, Sudeep [3 ]
机构
[1] Rajalakshmi Engn Coll, Dept Math, Chennai 602105, India
[2] Panimalar Engn Coll, Dept Math, Chennai 600123, India
[3] Australian Catholic Univ, Fac Educ & Arts, Sydney, NSW 2118, Australia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Resolving set; Basis; Star fan graph; CIRCULANT;
D O I
10.1038/s41598-024-83562-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Every node in a network is said to be resolved if it can be uniquely identified by a vector of distances to a specific set of nodes. The metric dimension is equivalent to the least possible cardinal number of a resolving set. Conditional resolving sets are obtained by imposing various constraints on resolving set. It is a fundamental parameter that provides insights into the structural properties and navigability of graphs, with diverse applications across different fields. This article focuses on identifying the metric dimension for a new network, star fan graph.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On the strong metric dimension of generalized butterfly graph, starbarbell graph, and Cm ⊙ Pn graph
    Mayasari, Ratih Yunia
    Kusmayadi, Tri Atmojo
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [42] Metric Dimension for Line Graph of Some Chemical Structures
    Raj, R. Nithya
    Rajan, R. Sundara
    Rajasingh, Indra
    Cangul, Ismail Naci
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (04): : 269 - 282
  • [43] The structure and metric dimension of the power graph of a finite group
    Feng, Min
    Ma, Xuanlong
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 43 : 82 - 97
  • [44] The Metric Dimension of the Total Graph of a Finite Commutative Ring
    Dolzan, David
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 748 - 759
  • [45] The fractional strong metric dimension in three graph products
    Kang, Cong X.
    Yero, Ismael G.
    Yi, Eunjeong
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 190 - 203
  • [46] On the Metric Dimension of the Reduced Power Graph of a Finite Group
    Ma, Xuanlong
    Li, Lan
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (01): : 1 - 15
  • [47] A central local metric dimension on acyclic and grid graph
    Listiana, Yuni
    Susilowati, Liliek
    Slamin, Slamin
    Osaye, Fadekemi Janet
    AIMS MATHEMATICS, 2023, 8 (09): : 21298 - 21311
  • [48] COMPUTING THE METRIC DIMENSION OF A GRAPH FROM PRIMARY SUBGRAPHS
    Kuziak, Dorota
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 273 - 293
  • [49] The metric dimension of the enhanced power graph of a finite group
    Ma, Xuanlong
    She, Yanhong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
  • [50] ASYMPTOTIC BEHAVIOR OF THE EDGE METRIC DIMENSION OF THE RANDOM GRAPH
    Zublirina, Nina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 589 - 599