COMPUTING THE METRIC DIMENSION OF A GRAPH FROM PRIMARY SUBGRAPHS

被引:12
|
作者
Kuziak, Dorota [1 ]
Rodriguez-Velazquez, Juan A. [1 ]
Yero, Ismael G. [2 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Cadiz, Escuela Politecn Super, Dept Matemat, Av Ramon Puyol S-N, Algeciras 11202, Spain
关键词
metric dimension; metric basis; primary subgraphs; rooted product graphs; corona product graphs; LEXICOGRAPHIC PRODUCT; HIERARCHICAL PRODUCT; RESOLVABILITY;
D O I
10.7151/dmgt.1934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph. Given an ordered set W = {w(1),..., w(k)} subset of V(G) and a vertex u is an element of V(G), the representation of u with respect to W is the ordered k-tuple (d(u, w(1)), d(u, w(2)), d(u, w(k))), where d(u, w(i)) denotes the distance between u and wi. The set W is a metric generator for G if every two different vertices of G have distinct representations. A minimum cardinality metric generator is called a metric basis of G and its cardinality is called the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-hard. In this paper we obtain closed formulae for the metric dimension of graphs with cut vertices. The main results are applied to specific constructions including rooted product graphs, corona product graphs, block graphs and chains of graphs.
引用
收藏
页码:273 / 293
页数:21
相关论文
共 50 条
  • [1] Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs
    Rodriguez-Velazquez, Juan A.
    Garcia Gomez, Carlos
    Barragan-Ramirez, Gabriel A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 686 - 693
  • [2] On the metric subgraphs of a graph
    Hu, Yanan
    Zhan, Xingzhi
    ARS MATHEMATICA CONTEMPORANEA, 2025, 25 (01)
  • [3] Computing Metric Dimension o f Power of Total Graph
    Nawaz, Sehar
    Ali, Murtaza
    Khan, Mushtaq Ahmad
    Khan, Sahib
    IEEE ACCESS, 2021, 9 : 74550 - 74561
  • [4] On the metric dimension of a graph
    Sooryanarayana, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (04): : 413 - 415
  • [5] Computing the k densest subgraphs of a graph
    Dondi, Riccardo
    Hermelin, Danny
    INFORMATION PROCESSING LETTERS, 2023, 179
  • [6] On the metric dimension of the total graph of a graph
    Sooryanarayana, B.
    Shreedhar, K.
    Narahari, N.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 82 - 95
  • [7] Computing the Hosoya Polynomial of Graphs from Primary Subgraphs
    Deutsch, Emeric
    Klavzar, Sandi
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 627 - 644
  • [8] On the metric dimension of the Jahangir graph
    Tomescu, Ioan
    Javaid, Imran
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (04): : 371 - 376
  • [9] ON THE BOOLEAN METRIC DIMENSION OF A GRAPH
    MELTER, RA
    TOMESCU, I
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (05): : 407 - 415
  • [10] THE LOCAL METRIC DIMENSION OF A GRAPH
    Okamoto, Futaba
    Phinezy, Bryan
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2010, 135 (03): : 239 - 255