Equilibrium propagation: the quantum and the thermal cases

被引:0
|
作者
Massar, Serge [1 ]
Mognetti, Bortolo Matteo [2 ]
机构
[1] Univ Libre Bruxelles ULB, Lab Informat Quant CP224, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles ULB, Interdisciplinary Ctr Nonlinear Phenomena & Comple, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
关键词
Machine learning; Equilibrium propagation; Quantum mechanics; Thermal fluctuations;
D O I
10.1007/s40509-024-00351-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equilibrium propagation is a recently introduced method to use and train artificial neural networks in which the network is at the minimum (more generally extremum) of an energy functional. Equilibrium propagation has shown good performance on a number of benchmark tasks. Here, we extend equilibrium propagation in two directions. First, we show that there is a natural quantum generalization of equilibrium propagation in which a quantum neural network is taken to be in the ground state (more generally any eigenstate) of the network Hamiltonian, with a similar training mechanism that exploits the fact that the mean energy is extremal on eigenstates. Second, we extend the analysis of equilibrium propagation at finite temperature, showing that thermal fluctuations allow one to naturally optimize the network without having to clamp the output layer during training. We also study the low-temperature limit of equilibrium propagation and show how clamping can be avoided also in this limit.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The Thermal Equilibrium Solution of a Generic Bipolar Quantum Hydrodynamic Model
    Andreas Unterreiter
    Communications in Mathematical Physics, 1997, 188 : 69 - 88
  • [42] Typicality of Thermal Equilibrium and Thermalization in Isolated Macroscopic Quantum Systems
    Hal Tasaki
    Journal of Statistical Physics, 2016, 163 : 937 - 997
  • [43] RETURN TO THERMAL-EQUILIBRIUM BY THE SOLUTION OF A QUANTUM LANGEVIN EQUATION
    MAASSEN, H
    JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (1-2) : 239 - 261
  • [44] Tunable electron counting statistics in a quantum dot at thermal equilibrium
    Zhang, X. C.
    Mazzeo, G.
    Brataas, A.
    Xiao, M.
    Yablonovitch, E.
    Jiang, H. W.
    PHYSICAL REVIEW B, 2009, 80 (03)
  • [45] CORRELATIONS IN CLASSICAL AND QUANTUM SYSTEMS FAR FROM THERMAL EQUILIBRIUM
    HAKEN, H
    ZEITSCHRIFT FUR PHYSIK, 1973, 265 (05): : 503 - 510
  • [46] Open quantum systems and thermal non-equilibrium processes
    Rahdar, Z.
    Lari, B.
    MODERN PHYSICS LETTERS B, 2020, 34 (17):
  • [48] Thermal transport in out-of-equilibrium quantum harmonic chains
    Nicacio, F.
    Ferraro, A.
    Imparato, A.
    Paternostro, M.
    Semiao, F. L.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [49] Quantum teleportation using superconducting charge qubits in thermal equilibrium
    Qiao Pan-Pan
    Abliz, Ahmad
    Cai Jiang-Tao
    Lu Jun-Zhe
    Tusun, Maimaitiyiming
    Maimaitiming, Ribigu
    ACTA PHYSICA SINICA, 2012, 61 (24)
  • [50] Some properties of correlations of quantum lattice systems in thermal equilibrium
    Froehlich, Juerg
    Ueltschi, Daniel
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)