Equilibrium propagation: the quantum and the thermal cases

被引:0
|
作者
Massar, Serge [1 ]
Mognetti, Bortolo Matteo [2 ]
机构
[1] Univ Libre Bruxelles ULB, Lab Informat Quant CP224, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles ULB, Interdisciplinary Ctr Nonlinear Phenomena & Comple, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
关键词
Machine learning; Equilibrium propagation; Quantum mechanics; Thermal fluctuations;
D O I
10.1007/s40509-024-00351-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equilibrium propagation is a recently introduced method to use and train artificial neural networks in which the network is at the minimum (more generally extremum) of an energy functional. Equilibrium propagation has shown good performance on a number of benchmark tasks. Here, we extend equilibrium propagation in two directions. First, we show that there is a natural quantum generalization of equilibrium propagation in which a quantum neural network is taken to be in the ground state (more generally any eigenstate) of the network Hamiltonian, with a similar training mechanism that exploits the fact that the mean energy is extremal on eigenstates. Second, we extend the analysis of equilibrium propagation at finite temperature, showing that thermal fluctuations allow one to naturally optimize the network without having to clamp the output layer during training. We also study the low-temperature limit of equilibrium propagation and show how clamping can be avoided also in this limit.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Thermal Equilibrium of a Macroscopic Quantum System in a Pure State
    Goldstein, Sheldon
    Huse, David A.
    Lebowitz, Joel L.
    Tumulka, Roderich
    PHYSICAL REVIEW LETTERS, 2015, 115 (10)
  • [32] Quantum systems in a stationary environment out of thermal equilibrium
    Bellomo, Bruno
    Messina, Riccardo
    Felbacq, Didier
    Antezza, Mauro
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [33] QUANTUM-FIELDS OUT OF THERMAL-EQUILIBRIUM
    EBOLI, O
    JACKIW, R
    PI, SY
    PHYSICAL REVIEW D, 1988, 37 (12): : 3557 - 3581
  • [34] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [35] DIFFUSIONAL-THERMAL INSTABILITY OF ADIABATIC FLAME PROPAGATION IN DISSOCIATION EQUILIBRIUM
    CHAO, BH
    LAW, CK
    JOURNAL OF FLUID MECHANICS, 1989, 201 : 1 - 12
  • [36] Diffusional-thermal instability of adiabatic flame propagation in dissociation equilibrium
    Chao, B.H.
    Law, C.K.
    Journal of Fluid Mechanics, 1989, 201 : 1 - 12
  • [37] Dynamics of an elementary quantum system in environments out of thermal equilibrium
    Bellomo, B.
    Messina, R.
    Antezza, M.
    EPL, 2012, 100 (02)
  • [38] The thermal equilibrium solution of a generic bipolar quantum hydrodynamic model
    Unterreiter, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) : 69 - 88
  • [39] Persisting quantum effects in the anisotropic Rabi model at thermal equilibrium
    Xu, He-Guang
    Montenegro, V.
    Xianlong, Gao
    Jin, Jiasen
    Neto, G. D. de Moraes
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [40] Shielding property for thermal equilibrium states in the quantum Ising model
    Moller, N. S.
    de Paula Jr, A. L.
    Drumond, R. C.
    PHYSICAL REVIEW E, 2018, 97 (03)