Equilibrium propagation: the quantum and the thermal cases

被引:0
|
作者
Massar, Serge [1 ]
Mognetti, Bortolo Matteo [2 ]
机构
[1] Univ Libre Bruxelles ULB, Lab Informat Quant CP224, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles ULB, Interdisciplinary Ctr Nonlinear Phenomena & Comple, Ave F D Roosevelt 50, B-1050 Brussels, Belgium
关键词
Machine learning; Equilibrium propagation; Quantum mechanics; Thermal fluctuations;
D O I
10.1007/s40509-024-00351-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equilibrium propagation is a recently introduced method to use and train artificial neural networks in which the network is at the minimum (more generally extremum) of an energy functional. Equilibrium propagation has shown good performance on a number of benchmark tasks. Here, we extend equilibrium propagation in two directions. First, we show that there is a natural quantum generalization of equilibrium propagation in which a quantum neural network is taken to be in the ground state (more generally any eigenstate) of the network Hamiltonian, with a similar training mechanism that exploits the fact that the mean energy is extremal on eigenstates. Second, we extend the analysis of equilibrium propagation at finite temperature, showing that thermal fluctuations allow one to naturally optimize the network without having to clamp the output layer during training. We also study the low-temperature limit of equilibrium propagation and show how clamping can be avoided also in this limit.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum Hamiltonian complexity in thermal equilibrium
    Sergey Bravyi
    Anirban Chowdhury
    David Gosset
    Pawel Wocjan
    Nature Physics, 2022, 18 : 1367 - 1370
  • [2] Quantum Hamiltonian complexity in thermal equilibrium
    Bravyi, Sergey
    Chowdhury, Anirban
    Gosset, David
    Wocjan, Pawel
    NATURE PHYSICS, 2022, 18 (11) : 1367 - +
  • [3] Quantum belief propagation: An algorithm for thermal quantum systems
    Hastings, M. B.
    PHYSICAL REVIEW B, 2007, 76 (20):
  • [4] Truncated thermal equilibrium distribution for intense beam propagation
    Davidson, RC
    Qin, H
    Lund, SM
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2003, 6 (02):
  • [5] Adiabatic thermal equilibrium for axisymmetic intense beam propagation
    Zhou, J.
    Samokhvalova, K.
    Chiping, C.
    2007 IEEE PULSED POWER CONFERENCE, VOLS 1-4, 2007, : 961 - 965
  • [6] Quantum mechanical interactions for realizing thermal equilibrium
    Kobayashi, Tsunehiro
    1996, Elsevier (210): : 4 - 5
  • [7] On the approach to thermal equilibrium of macroscopic quantum systems
    Goldstein, Sheldon
    Tumulka, Roderich
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 155 - 163
  • [8] Return to thermal equilibrium in quantum statistical mechanics
    Bach, V
    LONG TIME BEHAVIOUR OF CLASSICAL AND QUANTUM SYSTEMS, 2001, 1 : 62 - 72
  • [9] Approach to thermal equilibrium of macroscopic quantum systems
    Goldstein, Sheldon
    Lebowitz, Joel L.
    Mastrodonato, Christian
    Tumulka, Roderich
    Zanghi, Nino
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [10] Quantum mechanical interactions for realizing thermal equilibrium
    Kobayashi, T.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 1996, 210 (4-5):