Margin-aware optimized contrastive learning for enhanced self-supervised histopathological image classification

被引:0
|
作者
Gupta, Ekta [1 ]
Gupta, Varun [1 ]
机构
[1] Punjab Univ, Chandigarh Coll Engn & Technol, Chandigarh, India
来源
关键词
Contrastive loss; Margin-aware optimization; Self-supervised representation learning; And optimized loss;
D O I
10.1007/s13755-024-00316-4
中图分类号
R-058 [];
学科分类号
摘要
Histopathological images, characterized by their high resolution and intricate cellular structures, present unique challenges for automated analysis. Traditional supervised learning-based methods often rely on extensive labeled datasets, which are labour-intensive and expensive. In learning representations, self-supervised learning techniques have shown promising outcomes directly from raw image data without manual annotations. In this paper, we propose a novel margin-aware optimized contrastive learning approach to enhance representation learning from histopathological images using a self-supervised approach. The proposed approach optimizes contrastive learning with a margin-based strategy to effectively learn discriminative representations while enforcing a semantic similarity threshold. In the proposed loss function, a margin is used to enforce a certain level of similarity between positive pairs in the embedding space, and a scaling factor is introduced to adjust the sensitivity of the loss, thereby enhancing the discriminative capacity of the learned representations. Our approach demonstrates robust generalization in in- and out-domain settings through comprehensive experimental evaluations conducted on five distinct benchmark histopathological datasets belonging to three cancer types. The results obtained on different experimental settings show that the proposed approach outmatched the state-of-the-art approaches in cross-domain and cross-disease settings.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Self-Supervised Representation Learning for Document Image Classification
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2021, 9 : 164358 - 164367
  • [32] IMAGE ENHANCED ROTATION PREDICTION FOR SELF-SUPERVISED LEARNING
    Yamaguchi, Shinya
    Kanai, Sekitoshi
    Shioda, Tetsuya
    Takeda, Shoichiro
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 489 - 493
  • [33] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104
  • [34] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [35] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180
  • [36] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [37] A comprehensive perspective of contrastive self-supervised learning
    Chen, Songcan
    Geng, Chuanxing
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (04)
  • [38] A comprehensive perspective of contrastive self-supervised learning
    Songcan Chen
    Chuanxing Geng
    Frontiers of Computer Science, 2021, 15
  • [39] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237
  • [40] Self-supervised contrastive learning for itinerary recommendation
    Chen, Lei
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268