Margin-aware optimized contrastive learning for enhanced self-supervised histopathological image classification

被引:0
|
作者
Gupta, Ekta [1 ]
Gupta, Varun [1 ]
机构
[1] Punjab Univ, Chandigarh Coll Engn & Technol, Chandigarh, India
来源
关键词
Contrastive loss; Margin-aware optimization; Self-supervised representation learning; And optimized loss;
D O I
10.1007/s13755-024-00316-4
中图分类号
R-058 [];
学科分类号
摘要
Histopathological images, characterized by their high resolution and intricate cellular structures, present unique challenges for automated analysis. Traditional supervised learning-based methods often rely on extensive labeled datasets, which are labour-intensive and expensive. In learning representations, self-supervised learning techniques have shown promising outcomes directly from raw image data without manual annotations. In this paper, we propose a novel margin-aware optimized contrastive learning approach to enhance representation learning from histopathological images using a self-supervised approach. The proposed approach optimizes contrastive learning with a margin-based strategy to effectively learn discriminative representations while enforcing a semantic similarity threshold. In the proposed loss function, a margin is used to enforce a certain level of similarity between positive pairs in the embedding space, and a scaling factor is introduced to adjust the sensitivity of the loss, thereby enhancing the discriminative capacity of the learned representations. Our approach demonstrates robust generalization in in- and out-domain settings through comprehensive experimental evaluations conducted on five distinct benchmark histopathological datasets belonging to three cancer types. The results obtained on different experimental settings show that the proposed approach outmatched the state-of-the-art approaches in cross-domain and cross-disease settings.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Margin-aware optimized contrastive learning for enhanced self-supervised histopathological image classification (Vol 13, 2, 2025)
    Gupta, Ekta
    Gupta, Varun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 13 (01):
  • [2] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [3] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [4] Pathological Image Contrastive Self-supervised Learning
    Qin, Wenkang
    Jiang, Shan
    Luo, Lin
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 85 - 94
  • [5] Enhancing breast cancer classification via histopathological image analysis: Leveraging self-supervised contrastive learning and transfer learning
    Bin Ashraf, Faisal
    Alam, S. M. Maksudul
    Sakib, Shahriar M.
    HELIYON, 2024, 10 (02)
  • [6] Pyramid-based self-supervised learning for histopathological image classification
    Wang, Junjie
    Quan, Hao
    Wang, Chengguang
    Yang, Genke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [7] Self-Supervised Learning With Learnable Sparse Contrastive Sampling for Hyperspectral Image Classification
    Liang, Miaomiao
    Dong, Jian
    Yu, Lingjuan
    Yu, Xiangchun
    Meng, Zhe
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 13
  • [8] SCL: Self-supervised contrastive learning for few-shot image classification
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    NEURAL NETWORKS, 2023, 165 : 19 - 30
  • [9] Contrastive self-supervised learning for neurodegenerative disorder classification
    Gryshchuk, Vadym
    Singh, Devesh
    Teipel, Stefan
    Dyrba, Martin
    ADNI Study Grp
    AIBL Study Grp
    FTLDNI Study Grp
    FRONTIERS IN NEUROINFORMATICS, 2025, 19
  • [10] Part Aware Contrastive Learning for Self-Supervised Action Recognition
    Hua, Yilei
    Wu, Wenhan
    Zheng, Ce
    Lu, Aidong
    Liu, Mengyuan
    Chen, Chen
    Wu, Shiqian
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 855 - 863