Numerical investigation of aluminum-silicon solidification in a novel high temperature latent heat thermal energy storage system

被引:0
|
作者
Alemam, Asem [1 ]
Eveloy, Valerie [1 ,2 ]
Afgan, Imran [1 ]
机构
[1] Khalifa Univ Sci & Technol, Coll Engn, Dept Mech & Nucl Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Virtual Res Inst Sustainable Energy Prod & Utiliza, Abu Dhabi, U Arab Emirates
关键词
Computational fluid dynamics (CFD); Enthalpy-porosity method; Heat transfer fluid (HTF); Liquid metals; Phase change material (PCM); Solidification process; PHASE-CHANGE MATERIALS; TRANSFER FLUID; LIQUID-METALS; PERFORMANCE; PCM; TUBE; ENHANCEMENT; NANOPARTICLES; SODIUM;
D O I
10.1016/j.est.2025.115767
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage plays a critical role in facilitating the integration of intermittent renewable energy sources into contemporary energy systems. This study presents a comprehensive numerical investigation of the solidification process of an Aluminum-Silicon (88Al 12Si) metal alloy phase change material (PCM) in a state-of-the-art latent heat thermal energy storage (LHTES) system, utilizing liquid sodium as heat transfer fluid (HTF). A threedimensional (3-D) computational fluid dynamics (CFD) model using the time-dependent enthalpy-porosity method is developed to predict temperature distributions, PCM melt fraction, heat flux, and Nusselt number at the HTF-PCM tank interface. The HTF outlet temperature is found to be within +/- 5 degrees C (1 %) of corresponding experimental data. Using the validated CFD model, the effects of HTF selection, inlet velocity, and inlet temperature on PCM solidification are analyzed. Heat transfer within the PCM is found to be predominantly diffusion driven. The modeled LHTES system discharge efficiency is evaluated at 93.5 %, primarily due to the high thermal conductivity of the 88Al 12Si PCM, which enables the use of a simple geometric design without additional heat transfer enhancement apparatus. Relative to the existing reference system prototype design, potential reduction of up to 61 % in solidification time and enhancement of the thermohydraulic performance by a factor of 3.4 may be obtained using a reduced HTF inlet temperature (i.e., 400 degrees C instead of 527 degrees C). The results also suggest further thermofluid improvements using lithium or gallium as HTFs.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Heat transfer and thermal performance investigation on a visualized latent heat storage system in pilot-scale: Scalable medium-temperature thermal energy storage system
    Lv, Laiquan
    Huang, Shengyao
    Zhou, Hao
    JOURNAL OF CLEANER PRODUCTION, 2023, 426
  • [42] Performance investigation on an air source heat pump system with latent heat thermal energy storage
    Lin, Ying
    Fan, Yubin
    Yu, Meng
    Jiang, Long
    Zhang, Xuejun
    Energy, 2022, 239
  • [43] Performance investigation on an air source heat pump system with latent heat thermal energy storage
    Lin, Ying
    Fan, Yubin
    Yu, Meng
    Jiang, Long
    Zhang, Xuejun
    ENERGY, 2022, 239
  • [44] Experimental investigation of low-temperature latent heat thermal energy storage system using PCM and NEPCM
    John, M. R. Wilson
    Mamidi, Thrinadh
    Subendran, Satishkumar
    Subramanian, L. R. Ganapathy
    2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2018), 2018, 402
  • [45] Numerical study of dynamic melting enhancement in a latent heat thermal energy storage system
    Gasia, Jaume
    Groulx, Dominic
    Tay, N. H. Steven
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [46] Numerical simulation of a multi-layer latent heat thermal energy storage system
    Brousseau, P
    Lacroix, M
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1998, 22 (01) : 1 - 15
  • [47] Numerical investigation on thermal behaviors of two-dimensional latent thermal energy storage with PCM and aluminum foam
    Buonomo, B.
    Ercole, D.
    Manca, O.
    Nardini, S.
    34TH UIT HEAT TRANSFER CONFERENCE 2016, 2017, 796
  • [48] Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit
    Liu, Y. K.
    Tao, Y. B.
    SOLAR ENERGY, 2022, 243 : 410 - 420
  • [49] NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE ENHANCEMENT IN A LATENT HEAT THERMAL STORAGE UNIT
    Sciacovelli, Adriano
    Verda, Vittorio
    Colella, Francesco
    PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2012, VOL 2, 2012, : 543 - 551
  • [50] Numerical Analysis on a Latent Thermal Energy Storage System with Phase Change Materials and Aluminum Foam
    Buonomo, Bernardo
    Ercole, Davide
    Manca, Oronzio
    Nardini, Sergio
    HEAT TRANSFER ENGINEERING, 2020, 41 (12) : 1075 - 1084