Numerical investigation of aluminum-silicon solidification in a novel high temperature latent heat thermal energy storage system

被引:0
|
作者
Alemam, Asem [1 ]
Eveloy, Valerie [1 ,2 ]
Afgan, Imran [1 ]
机构
[1] Khalifa Univ Sci & Technol, Coll Engn, Dept Mech & Nucl Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Virtual Res Inst Sustainable Energy Prod & Utiliza, Abu Dhabi, U Arab Emirates
关键词
Computational fluid dynamics (CFD); Enthalpy-porosity method; Heat transfer fluid (HTF); Liquid metals; Phase change material (PCM); Solidification process; PHASE-CHANGE MATERIALS; TRANSFER FLUID; LIQUID-METALS; PERFORMANCE; PCM; TUBE; ENHANCEMENT; NANOPARTICLES; SODIUM;
D O I
10.1016/j.est.2025.115767
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage plays a critical role in facilitating the integration of intermittent renewable energy sources into contemporary energy systems. This study presents a comprehensive numerical investigation of the solidification process of an Aluminum-Silicon (88Al 12Si) metal alloy phase change material (PCM) in a state-of-the-art latent heat thermal energy storage (LHTES) system, utilizing liquid sodium as heat transfer fluid (HTF). A threedimensional (3-D) computational fluid dynamics (CFD) model using the time-dependent enthalpy-porosity method is developed to predict temperature distributions, PCM melt fraction, heat flux, and Nusselt number at the HTF-PCM tank interface. The HTF outlet temperature is found to be within +/- 5 degrees C (1 %) of corresponding experimental data. Using the validated CFD model, the effects of HTF selection, inlet velocity, and inlet temperature on PCM solidification are analyzed. Heat transfer within the PCM is found to be predominantly diffusion driven. The modeled LHTES system discharge efficiency is evaluated at 93.5 %, primarily due to the high thermal conductivity of the 88Al 12Si PCM, which enables the use of a simple geometric design without additional heat transfer enhancement apparatus. Relative to the existing reference system prototype design, potential reduction of up to 61 % in solidification time and enhancement of the thermohydraulic performance by a factor of 3.4 may be obtained using a reduced HTF inlet temperature (i.e., 400 degrees C instead of 527 degrees C). The results also suggest further thermofluid improvements using lithium or gallium as HTFs.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Investigation on the performance and environmental impact of a latent heat thermal energy storage system
    Salaudeen S.A.
    Journal of King Saud University - Engineering Sciences, 2019, 31 (04): : 368 - 374
  • [32] Melting and solidification performance of latent heat thermal energy storage system under flip condition
    Li, Xueqiang
    Wang, Qihui
    Huang, Xinyu
    Yang, Xiaohu
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [33] Solidification and Melting Periods of an Ice-on-Coil Latent Heat Thermal Energy Storage System
    Ezan, Mehmet Akif
    Erek, Aytunc
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (06):
  • [34] Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system
    Zonouzi, Sajjad Ahangar
    Dadvar, Arash
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [35] Numerical investigation and extensive parametric analysis of cryogenic latent heat shell and tube thermal energy storage system
    Shakrina, Ghiwa
    Rivera-Tinoco, Rodrigo
    Bouallou, Chakib
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 34
  • [36] An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation
    Regin, A. Felix
    Solanki, S. C.
    Saini, J. S.
    RENEWABLE ENERGY, 2009, 34 (07) : 1765 - 1773
  • [37] Numerical investigation of a shell-and-tube latent heat thermal energy storage system for urban heating network
    Lamrani, Bilal
    Kousksou, Tarik
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [38] A review of high temperature (≥ 500 °C) latent heat thermal energy storage
    Opolot, Michael
    Zhao, Chunrong
    Liu, Ming
    Mancin, Simone
    Bruno, Frank
    Hooman, Kamel
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 160
  • [39] Experimental investigation of melting and solidification characteristics in a vertical shell and tube latent heat thermal energy storage system with novel directional flow annular fins
    Naik, Lakshmana
    Gumtapure, Veershetty
    Murthy, B. V. Rudra
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [40] Numerical investigation on latent heat thermal energy storage in a phase change material using a heat exchanger
    Ghosh, Debasree
    Kumar, Prasoon
    Sharma, Siddha
    Guha, Chandan
    Ghose, Joyjeet
    HEAT TRANSFER, 2021, 50 (05) : 4289 - 4308