Numerical investigation of aluminum-silicon solidification in a novel high temperature latent heat thermal energy storage system

被引:0
|
作者
Alemam, Asem [1 ]
Eveloy, Valerie [1 ,2 ]
Afgan, Imran [1 ]
机构
[1] Khalifa Univ Sci & Technol, Coll Engn, Dept Mech & Nucl Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Virtual Res Inst Sustainable Energy Prod & Utiliza, Abu Dhabi, U Arab Emirates
关键词
Computational fluid dynamics (CFD); Enthalpy-porosity method; Heat transfer fluid (HTF); Liquid metals; Phase change material (PCM); Solidification process; PHASE-CHANGE MATERIALS; TRANSFER FLUID; LIQUID-METALS; PERFORMANCE; PCM; TUBE; ENHANCEMENT; NANOPARTICLES; SODIUM;
D O I
10.1016/j.est.2025.115767
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage plays a critical role in facilitating the integration of intermittent renewable energy sources into contemporary energy systems. This study presents a comprehensive numerical investigation of the solidification process of an Aluminum-Silicon (88Al 12Si) metal alloy phase change material (PCM) in a state-of-the-art latent heat thermal energy storage (LHTES) system, utilizing liquid sodium as heat transfer fluid (HTF). A threedimensional (3-D) computational fluid dynamics (CFD) model using the time-dependent enthalpy-porosity method is developed to predict temperature distributions, PCM melt fraction, heat flux, and Nusselt number at the HTF-PCM tank interface. The HTF outlet temperature is found to be within +/- 5 degrees C (1 %) of corresponding experimental data. Using the validated CFD model, the effects of HTF selection, inlet velocity, and inlet temperature on PCM solidification are analyzed. Heat transfer within the PCM is found to be predominantly diffusion driven. The modeled LHTES system discharge efficiency is evaluated at 93.5 %, primarily due to the high thermal conductivity of the 88Al 12Si PCM, which enables the use of a simple geometric design without additional heat transfer enhancement apparatus. Relative to the existing reference system prototype design, potential reduction of up to 61 % in solidification time and enhancement of the thermohydraulic performance by a factor of 3.4 may be obtained using a reduced HTF inlet temperature (i.e., 400 degrees C instead of 527 degrees C). The results also suggest further thermofluid improvements using lithium or gallium as HTFs.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system
    Yang, Jialin
    Du, Xiaoze
    Yang, Lijun
    Yang, Yongping
    SOLAR ENERGY, 2013, 98 : 543 - 552
  • [2] NUMERICAL INVESTIGATION ON A LATENT THERMAL ENERGY STORAGE WITH ALUMINUM FOAM
    Buonomo, Bernardo
    Ercole, Davide
    Manca, Oronzio
    Nardini, Sergio
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 1, 2016,
  • [3] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [4] A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units
    Khalifa, Abdulmajed
    Tan, Lippong
    Date, Abhijit
    Akbarzadeh, Aliakbar
    APPLIED THERMAL ENGINEERING, 2014, 70 (01) : 609 - 619
  • [5] NUMERICAL INVESTIGATION ON THE EFFECT OF ALUMINUM FOAM IN A LATENT THERMAL ENERGY STORAGE
    Buonomo, Bernardo
    Ercole, Davide
    Manca, Oronzio
    Celik, Hasan
    Mobedi, Moghtada
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 8B, 2016,
  • [6] Investigation on the thermal performance of a high-temperature latent heat storage system
    Ma, Zhao
    Yang, Wei-Wei
    Yuan, Fan
    Jin, Bo
    He, Ya-Ling
    APPLIED THERMAL ENGINEERING, 2017, 122 : 579 - 592
  • [7] Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material
    Rea, Jonathan E.
    Oshman, Christopher J.
    Singh, Abhishek
    Alleman, Jeff
    Parilla, Philip A.
    Hardin, Corey L.
    Olsen, Michele L.
    Siegel, Nathan P.
    Ginley, David S.
    Toberer, Eric S.
    APPLIED ENERGY, 2018, 230 : 1218 - 1229
  • [8] Numerical analysis of a latent heat thermal energy storage system
    Fteïti, Mehdi
    Nasrallah, Sassi Ben
    International Journal of Heat and Technology, 2004, 22 (01) : 161 - 164
  • [9] Numerical analysis of latent heat thermal energy storage system
    Vyshak, N. R.
    Jilani, G.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (07) : 2161 - 2168
  • [10] NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE
    Li, Pengda
    Xu, Chao
    Liao, Zhirong
    Ju, Xing
    Ye, Feng
    FRONTIERS IN HEAT AND MASS TRANSFER, 2020, 15 (01): : 1 - 10