Locally Discriminating Nonlocal Tripartite Orthogonal Product States with Entanglement Resource

被引:0
|
作者
Cao, Tian-Qing [1 ]
Gao, Bo-Hui [1 ]
Xin, Qiao-Ling [2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Entanglement-assisted local distinguishability; Local operations and classical communication; Orthogonal product state; Less nonlocality with more entanglement; QUANTUM; DISTINGUISHABILITY;
D O I
10.1007/s10773-025-05923-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, using entanglement resources to assist the local discrimination of orthogonal quantum states has attracted wide attention. However, many studies mainly focus on entanglement-assisted local discrimination in bipartite systems, and there are relatively few in multipartite states. In this paper, for the nonlocal set of 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} orthogonal product states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}(d >= 3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d\ge 3)$$\end{document} constructed by Zhu et al. (Quantum Inf. Process. 21, 252, 2022), we propose a method of using an ancillary d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d$$\end{document} maximally entangled state to realize the local perfect discrimination. Firstly, with a 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3$$\end{document} maximally entangled state as an auxiliary resource, we present a method to exactly identify the locally indistinguishable 6 orthogonal product states in 3 circle times 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3\otimes 3$$\end{document} by local operations and classical communication (LOCC). Then the distinguishing method can be generalized to the 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}. These results not only reveal the phenomenon of less nonlocality with more entanglement, but also help us better realize the usefulness of entanglement in the local discrimination of quantum states.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Isomorphism of nonlocal sets of orthogonal product states in bipartite quantum systems
    Xu, Guang-Bao
    Zhu, Yan-Ying
    Jiang, Dong-Huan
    Yang, Yu-Guang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 619
  • [32] Nonlocal sets of orthogonal product states in an arbitrary multipartite quantum system
    Jiang, Dong-Huan
    Xu, Guang-Bao
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [33] Using entanglement more efficiently in distinguishing orthogonal product states by LOCC
    Lv-Jun Li
    Fei Gao
    Zhi-Chao Zhang
    Qiao-Yan Wen
    Quantum Information Processing, 2019, 18
  • [34] Using entanglement more efficiently in distinguishing orthogonal product states by LOCC
    Li, Lv-Jun
    Gao, Fei
    Zhang, Zhi-Chao
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [35] Entanglement properties of a kind of tripartite Gaussian states
    Chen, XY
    QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II, 2005, 5631 : 222 - 229
  • [36] Entanglement bounds of tripartite squeezed thermal states
    Chen, XY
    PHYSICS LETTERS A, 2005, 335 (2-3) : 121 - 126
  • [37] Relationship between entanglement and polarization in tripartite states
    Montenegro La Torre, C. R. M.
    Yugra, Y.
    De Zela, F.
    JOURNAL OF OPTICS, 2022, 24 (10)
  • [38] Quantum Voting Scheme Based on Locally Indistinguishable Orthogonal Product States
    Dong-Huan Jiang
    Juan Wang
    Xiang-Qian Liang
    Guang-Bao Xu
    Hong-Feng Qi
    International Journal of Theoretical Physics, 2020, 59 : 436 - 444
  • [39] Quantum Voting Scheme Based on Locally Indistinguishable Orthogonal Product States
    Jiang, Dong-Huan
    Wang, Juan
    Liang, Xiang-Qian
    Xu, Guang-Bao
    Qi, Hong-Feng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 436 - 444
  • [40] A NOTE ON ENTANGLEMENT CLASSIFICATION FOR TRIPARTITE MIXED STATES
    Zhao, Hui
    Liu, Yu-Qiu
    Wang, Zhi-Xi
    Fei, Shao-Ming
    ACTA POLYTECHNICA, 2022, 62 (01) : 222 - 227