Locally Discriminating Nonlocal Tripartite Orthogonal Product States with Entanglement Resource

被引:0
|
作者
Cao, Tian-Qing [1 ]
Gao, Bo-Hui [1 ]
Xin, Qiao-Ling [2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Entanglement-assisted local distinguishability; Local operations and classical communication; Orthogonal product state; Less nonlocality with more entanglement; QUANTUM; DISTINGUISHABILITY;
D O I
10.1007/s10773-025-05923-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, using entanglement resources to assist the local discrimination of orthogonal quantum states has attracted wide attention. However, many studies mainly focus on entanglement-assisted local discrimination in bipartite systems, and there are relatively few in multipartite states. In this paper, for the nonlocal set of 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} orthogonal product states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}(d >= 3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d\ge 3)$$\end{document} constructed by Zhu et al. (Quantum Inf. Process. 21, 252, 2022), we propose a method of using an ancillary d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d$$\end{document} maximally entangled state to realize the local perfect discrimination. Firstly, with a 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3$$\end{document} maximally entangled state as an auxiliary resource, we present a method to exactly identify the locally indistinguishable 6 orthogonal product states in 3 circle times 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3\otimes 3$$\end{document} by local operations and classical communication (LOCC). Then the distinguishing method can be generalized to the 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}. These results not only reveal the phenomenon of less nonlocality with more entanglement, but also help us better realize the usefulness of entanglement in the local discrimination of quantum states.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Locally distinguishing genuinely nonlocal sets with entanglement resource
    Qiao Qiao
    Su-Juan Zhang
    Chen-Ming Bai
    Lu Liu
    Communications in Theoretical Physics, 2024, 76 (12) : 44 - 51
  • [22] Characterizing Locally Indistinguishable Orthogonal Product States
    Feng, Yuan
    Shi, Yaoyun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2799 - 2806
  • [23] Separability and entanglement in tripartite states
    Shunlong Luo
    Wei Sun
    Theoretical and Mathematical Physics, 2009, 160 : 1316 - 1323
  • [24] Separability and entanglement in tripartite states
    Luo, Shunlong
    Sun, Wei
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (03) : 1316 - 1323
  • [25] Understanding entanglement as resource: Locally distinguishing unextendible product bases
    Cohen, Scott M.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [26] Nonlocal sets of orthogonal multipartite product states with less members
    Hui-Juan Zuo
    Jia-Huan Liu
    Xiao-Fan Zhen
    Shao-Ming Fei
    Quantum Information Processing, 2021, 20
  • [27] Nonlocal sets of orthogonal multipartite product states with less members
    Zuo, Hui-Juan
    Liu, Jia-Huan
    Zhen, Xiao-Fan
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [28] Several nonlocal sets of multipartite pure orthogonal product states
    Halder, Saronath
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [29] Monogamy and entanglement in tripartite quantum states
    Yu, Chang-shui
    Song, He-shan
    PHYSICS LETTERS A, 2009, 373 (07) : 727 - 730
  • [30] Entanglement monogamy of tripartite quantum states
    Yu, Chang-Shui
    Song, He-Shan
    PHYSICAL REVIEW A, 2008, 77 (03):