Entanglement-assisted local distinguishability;
Local operations and classical communication;
Orthogonal product state;
Less nonlocality with more entanglement;
QUANTUM;
DISTINGUISHABILITY;
D O I:
10.1007/s10773-025-05923-9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
In recent years, using entanglement resources to assist the local discrimination of orthogonal quantum states has attracted wide attention. However, many studies mainly focus on entanglement-assisted local discrimination in bipartite systems, and there are relatively few in multipartite states. In this paper, for the nonlocal set of 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} orthogonal product states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}(d >= 3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d\ge 3)$$\end{document} constructed by Zhu et al. (Quantum Inf. Process. 21, 252, 2022), we propose a method of using an ancillary d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d$$\end{document} maximally entangled state to realize the local perfect discrimination. Firstly, with a 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3$$\end{document} maximally entangled state as an auxiliary resource, we present a method to exactly identify the locally indistinguishable 6 orthogonal product states in 3 circle times 3 circle times 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\otimes 3\otimes 3$$\end{document} by local operations and classical communication (LOCC). Then the distinguishing method can be generalized to the 3d-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d-3$$\end{document} states in d circle times d circle times d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes d$$\end{document}. These results not only reveal the phenomenon of less nonlocality with more entanglement, but also help us better realize the usefulness of entanglement in the local discrimination of quantum states.
机构:
Duquesne Univ, Dept Phys, Pittsburgh, PA 15282 USA
Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USADuquesne Univ, Dept Phys, Pittsburgh, PA 15282 USA
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Zuo, Hui-Juan
Liu, Jia-Huan
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Liu, Jia-Huan
Zhen, Xiao-Fan
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Zhen, Xiao-Fan
Fei, Shao-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China