Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers

被引:9
|
作者
Kim, T. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
D O I
10.1134/S1061920824030087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087Abstract Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to study probabilistic Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} and probabilistic multi-poly-Bernoulli polynomials associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. They are respectively probabilistic extensions of Bernoulli polynomials of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and multi-poly-Bernoulli polynomials. We find explicit expressions, certain related identities and some properties for them. In addition, we treat the special cases of Poisson, gamma and Bernoulli random variables. DOI 10.1134/S1061920824030087
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [41] Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
    Qi, Feng
    Dagli, Muhammet Cihat
    Lim, Dongkyu
    OPEN MATHEMATICS, 2021, 19 (01): : 833 - 849
  • [42] Explicit Formulas Involving q-Euler Numbers and Polynomials
    Araci, Serkan
    Acikgoz, Mehmet
    Seo, Jong Jin
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [43] Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers
    Dagli, Muhammet Cihat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (05) : 2582 - 2591
  • [44] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [45] Congruences for Bernoulli numbers and Bernoulli polynomials
    Sun, ZH
    DISCRETE MATHEMATICS, 1997, 163 (1-3) : 153 - 163
  • [46] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [47] Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials
    Qi, Feng
    Guo, Bai-Ni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [48] Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials
    Feng Qi
    Bai-Ni Guo
    Mediterranean Journal of Mathematics, 2017, 14
  • [49] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [50] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,