Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent

被引:0
|
作者
Zineddaine G. [1 ]
Sabiry A. [1 ]
Melliani S. [1 ]
Kassidi A. [1 ]
机构
[1] Laboratory LMACS, Sultan Moulay Slimane University, Beni-Mellal
关键词
35J62; 35J70; 46E35; Anisotropic weighted Sobolev spaces; Entropy solutions; Neumann elliptic problem; Obstacle problems; Variable exponent;
D O I
10.1007/s40324-024-00347-7
中图分类号
学科分类号
摘要
In this paper, we focus on a class of anisotropic obstacle problems governed by a Leray-Lions operator, involving non-linear elliptic equations with a Hardy potential exhibiting variable growth. Additionally, these problems are equipped by homogeneous Neumann boundary conditions. Using truncation techniques and the monotonicity method, we establish the existence of entropy solutions for the studied problem within the framework of anisotropic weighted Sobolev spaces with a variable exponent. © The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2024.
引用
收藏
页码:45 / 68
页数:23
相关论文
共 50 条
  • [41] p(x) -Laplacian-Like Neumann Problems in Variable-Exponent Sobolev Spaces via Topological Degree Methods
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    FILOMAT, 2022, 36 (17) : 5973 - 5984
  • [42] Regularity estimates for Green operators of Dirichlet and Neumann problems on weighted Hardy spaces
    The Anh Bui
    Xuan Thinh Duong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (02) : 597 - 631
  • [43] The Choquard Equation with Weighted Terms and Sobolev-Hardy Exponent
    Sang, Yanbin
    Luo, Xiaorong
    Wang, Yongqing
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [44] Holder quasicontinuity in variable exponent Sobolev spaces
    Harjulehto, Petteri
    Kinnunen, Juha
    Tuhkanen, Katja
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [45] Uniform Convexity in Variable Exponent Sobolev Spaces
    Bachar, Mostafa
    Khamsi, Mohamed A.
    Mendez, Osvaldo
    SYMMETRY-BASEL, 2023, 15 (11):
  • [46] Nonlocal characterizations of variable exponent Sobolev spaces
    Ferrari, Gianluca
    Squassina, Marco
    ASYMPTOTIC ANALYSIS, 2022, 127 (1-2) : 121 - 142
  • [47] Wavelet characterization of Sobolev spaces with variable exponent
    Izuki, Mitsuo
    JOURNAL OF APPLIED ANALYSIS, 2011, 17 (01) : 37 - 49
  • [48] On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications
    Nabil Chems Eddine
    Maria Alessandra Ragusa
    Dušan D. Repovš
    Fractional Calculus and Applied Analysis, 2024, 27 : 725 - 756
  • [49] On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications
    Chems Eddine, Nabil
    Ragusa, Maria Alessandra
    Repovs, Dusan D.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 725 - 756
  • [50] Variable Exponent Sobolev Spaces and Regularity of Domains
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7304 - 7319