Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent

被引:0
|
作者
Zineddaine G. [1 ]
Sabiry A. [1 ]
Melliani S. [1 ]
Kassidi A. [1 ]
机构
[1] Laboratory LMACS, Sultan Moulay Slimane University, Beni-Mellal
关键词
35J62; 35J70; 46E35; Anisotropic weighted Sobolev spaces; Entropy solutions; Neumann elliptic problem; Obstacle problems; Variable exponent;
D O I
10.1007/s40324-024-00347-7
中图分类号
学科分类号
摘要
In this paper, we focus on a class of anisotropic obstacle problems governed by a Leray-Lions operator, involving non-linear elliptic equations with a Hardy potential exhibiting variable growth. Additionally, these problems are equipped by homogeneous Neumann boundary conditions. Using truncation techniques and the monotonicity method, we establish the existence of entropy solutions for the studied problem within the framework of anisotropic weighted Sobolev spaces with a variable exponent. © The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2024.
引用
收藏
页码:45 / 68
页数:23
相关论文
共 50 条
  • [21] The double obstacle problem in generalized Sobolev spaces with Hardy potential
    Sabiry, Abdelaziz
    Zineddaine, Ghizlane
    Melliani, Said
    Kassidi, Abderrazak
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [22] On some bilinear problems on weighted Hardy-Sobolev spaces
    Cascante, C.
    Ortega, J. M.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (13) : 1616 - 1634
  • [23] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    David Cruz-Uribe
    Farman I. Mamedov
    Revista Matemática Complutense, 2012, 25 : 335 - 367
  • [24] Anisotropic Herz-type Hardy spaces with variable exponent and their applications
    H. Zhao
    J. Zhou
    Acta Mathematica Hungarica, 2018, 156 : 309 - 335
  • [25] Anisotropic Herz-type Hardy spaces with variable exponent and their applications
    Zhao, H.
    Zhou, J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (02) : 309 - 335
  • [26] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    Cruz-Uribe, David
    Mamedov, Farman I.
    REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 335 - 367
  • [27] On the Neumann problem with the Hardy–Sobolev potential
    J. Chabrowski
    Annali di Matematica Pura ed Applicata, 2007, 186 : 703 - 719
  • [28] Weak solution for obstacle problem with variable growth and weak monotonicity in Sobolev spaces with variable exponent
    Allalou, Mouad
    El Ouaarabi, Mohamed
    Raji, Abderrahmane
    FILOMAT, 2024, 38 (17) : 6245 - 6257
  • [29] Characterization of Bp(.) Weight and Some Maximal Characterizations of Anisotropic Weighted Hardy-Lorentz Spaces with Variable Exponent
    Li, Hongliang
    Yu, Xiao
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 553 - 572
  • [30] ON NONHOMOGENEOUS ELLIPTIC PROBLEMS INVOLVING THE HARDY POTENTIAL AND CRITICAL SOBOLEV EXPONENT
    Zhang, Jing
    Ma, Shiwang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 687 - 710