Understanding dislocation velocity in TaW using explainable machine learning

被引:0
|
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
来源
TUNGSTEN | 2024年
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
  • [31] Principles and Practice of Explainable Machine Learning
    Belle, Vaishak
    Papantonis, Ioannis
    FRONTIERS IN BIG DATA, 2021, 4
  • [32] Explainable Machine Learning for Trustworthy AI
    Giannotti, Fosca
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 3 - 3
  • [33] Explainable Machine Learning for Fraud Detection
    Psychoula, Ismini
    Gutmann, Andreas
    Mainali, Pradip
    Lee, S. H.
    Dunphy, Paul
    Petitcolas, Fabien A. P.
    COMPUTER, 2021, 54 (10) : 49 - 59
  • [34] Explainable machine learning models with privacy
    Bozorgpanah, Aso
    Torra, Vicenc
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (01) : 31 - 50
  • [35] eXplainable Cooperative Machine Learning with NOVA
    Tobias Baur
    Alexander Heimerl
    Florian Lingenfelser
    Johannes Wagner
    Michel F. Valstar
    Björn Schuller
    Elisabeth André
    KI - Künstliche Intelligenz, 2020, 34 : 143 - 164
  • [36] Explainable machine learning models with privacy
    Aso Bozorgpanah
    Vicenç Torra
    Progress in Artificial Intelligence, 2024, 13 : 31 - 50
  • [37] Hardware Acceleration of Explainable Machine Learning
    Pan, Zhixin
    Mishra, Prabhat
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1127 - 1130
  • [38] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Björn
    André, Elisabeth
    KI - Kunstliche Intelligenz, 2020, 34 (02): : 143 - 164
  • [39] Explainable Machine Learning for Intrusion Detection
    Bellegdi, Sameh
    Selamat, Ali
    Olatunji, Sunday O.
    Fujita, Hamido
    Krejcar, Ondfrej
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 122 - 134
  • [40] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27