Understanding dislocation velocity in TaW using explainable machine learning

被引:0
|
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
来源
TUNGSTEN | 2024年
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
  • [21] TagVet: Vetting Malware Tags using Explainable Machine Learning
    Bensalim, Souphiane
    Klein, David
    Barber, Thomas
    Johns, Martin
    PROCEEDINGS OF THE 14TH EUROPEAN WORKSHOP ON SYSTEMS SECURITY (EUROSEC 2021), 2021, : 34 - 40
  • [22] From Explainable AI to Explainable Simulation: Using Machine Learning and XAI to understand System Robustness
    Feldkamp, Niclas
    Strassburger, Steffen
    PROCEEDINGS OF THE 2023 ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACMSIGSIM-PADS 2023, 2023, : 96 - 106
  • [23] Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence
    Bin Nasir, Fuad
    Li, Jin
    WATER ENVIRONMENT RESEARCH, 2024, 96 (10)
  • [24] Understanding risk factors for postoperative mortality in neonates based on explainable machine learning technology
    Hu, Yaoqin
    Gong, Xiaojue
    Shu, Liqi
    Zeng, Xian
    Duan, Huilong
    Luo, Qinyu
    Zhang, Baihui
    Ji, Yaru
    Wang, Xiaofeng
    Shu, Qiang
    Li, Haomin
    JOURNAL OF PEDIATRIC SURGERY, 2021, 56 (12) : 2165 - 2171
  • [25] Explainable Machine Learning via Argumentation
    Prentzas, Nicoletta
    Pattichis, Constantinos
    Kakas, Antonis
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 371 - 398
  • [26] Explainable machine learning in materials science
    Xiaoting Zhong
    Brian Gallagher
    Shusen Liu
    Bhavya Kailkhura
    Anna Hiszpanski
    T. Yong-Jin Han
    npj Computational Materials, 8
  • [27] Explainable Human-Machine Teaming using Model Checking and Interpretable Machine Learning
    Bersani, Marcello M.
    Camilli, Matteo
    Lestingi, Livia
    Mirandola, Raffaela
    Rossi, Matteo
    2023 IEEE/ACM 11TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING, FORMALISE, 2023, : 18 - 28
  • [28] Explainable machine learning for diffraction patterns
    Nawaz, Shah
    Rahmani, Vahid
    Pennicard, David
    Setty, Shabarish Pala Ramakantha
    Klaudel, Barbara
    Graafsma, Heinz
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 1494 - 1504
  • [29] Explainable machine learning in materials science
    Zhong, Xiaoting
    Gallagher, Brian
    Liu, Shusen
    Kailkhura, Bhavya
    Hiszpanski, Anna
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [30] eXplainable Cooperative Machine Learning with NOVA
    Baur, Tobias
    Heimerl, Alexander
    Lingenfelser, Florian
    Wagner, Johannes
    Valstar, Michel F.
    Schuller, Bjoern
    Andre, Elisabeth
    KUNSTLICHE INTELLIGENZ, 2020, 34 (02): : 143 - 164